Section 10.5 P. 690 7

1. Sketch the graph of each of the following equations:
 a) \(x^2 + 12x - y + 39 = 0 \)
 b) \(16x^2 - 9y^2 + 64x - 90y = 305 \)
 c) \(x^2 + 2y^2 - 6x + 4y + 7 = 0 \)

Section 10.1 P. 656 11, 13, 16, 20

2. Give 3 different sets of parametric equations describing curves lying on the parabola \(y = x^2 \). For each, describe how the curve is swept out.

Section 10.2 P. 666 1, 5, 7, 11, 15, 17, 29

3. Consider the parametric equations
 \[
 x = \sin^2 t \quad -\infty < t < \infty \\
 y = \cos t
 \]
 a) Find \(\frac{dy}{dx} \) and \(\frac{d^2y}{dx^2} \) in terms of \(t \)
 b) By examining the signs of \(\frac{dy}{dx} \) and \(\frac{d^2y}{dx^2} \), sketch the corresponding path.
 c) Check your answer by eliminating \(t \) and graphing the resulting cartesian equation.

Section 10.3 P. 677 1a, 3b, 9, 29, 33, 34, 39, 40

4. Sketch the graph of the polar equation \(r = \frac{1}{\theta} \), \(\theta > 0 \)

Section 10.4 P. 683 3, 7, 8, 21, 23, 27, 35, 46

5. Consider the polar equation \(r = 2 \sec \theta \), \(0 \leq \theta \leq \frac{\pi}{4} \)
 a) Find the arclength of this piece of graph using integration.
 b) Convert the polar equation to rectangular coordinates, sketch the graph, and check your answer for a.)