In this problem, we investigate the behavior of the improper integral
\[\int_{2}^{\infty} \frac{1}{x(\ln x)^p} \, dx \]

1. First let's look at two special cases; define \(f(x) = \frac{1}{x(\ln x)^2} \) and \(g(x) = \frac{1}{x \sqrt{\ln x}} \).

For each of these two functions, find the area under the graph between \(x=2 \) and \(x=t \), where \(t \) is left as a variable. Then evaluate this expression for \(t = 10, 100, 10^6 \) and \(10^{12} \) using evalf. Can you tell what the limiting behavior is as \(t \to \infty \)?

2. Use the limit command on the expressions you found in part 1 to determine whether the improper integrals of \(f(x) \) and \(g(x) \) converge or diverge. Check these answers by computing the improper integrals directly using the int command.

3. With paper & pencil, show below that \(\int_{2}^{\infty} \frac{1}{x(\ln x)^p} \, dx \) converges if and only if \(p > 1 \).