1. Let \(\vec{a} = \langle 1, -1, 4 \rangle \), \(\vec{b} = \langle 2, -1, 3 \rangle \), \(\vec{c} = \langle -4, 2, -6 \rangle \)
 a) Are \(\vec{a} \) and \(\vec{b} \) orthogonal? Explain.
 b) Find a unit vector orthogonal to both \(\vec{a} \) and \(\vec{c} \).

2. Find the area of the triangle with vertices \(P(-1,0,1) \), \(Q(1,1,2) \) and \(R(0,1,3) \).

3. Show that the line \(\frac{x-2}{3} = \frac{y-3}{2} = z-1 \) never intersects the plane \(2x - y - 4z = 87 \).

4. Find scalar parametric equations for the line containing the point \(P(1,1,2) \) and parallel to the line \(\frac{x-2}{3} = \frac{y-3}{2} = z-1 \).

5. Find an equation for the plane containing the point \(P(1,1,1) \) and the line \(\frac{x-2}{3} = \frac{y-3}{2} = z-1 \).

6. Find the work done by the force \(\vec{F} = \langle 2, -3, 1 \rangle \) in moving an object from \(P(1,0,2) \) 4 units toward the point \(Q(2,4,0) \).

7. The vector function \(\vec{F}(t) = \langle 2\sin t, e^t, t \rangle \) represents a space curve.
 a) What value of \(t \) produces the point \((0,1,0) \) on the curve?
 b) Find parametric equs for the line tangent to this curve at the point \(P(0,1,0) \).

8. A projectile is fired with an initial speed of 800 ft/s and angle of elevation 30° from ground level. Find the range of the projectile, the maximum height it reaches, and its speed upon impact.