For \(n \geq 2 \), \(n \) prime \(\Rightarrow n \) odd.

So \(g(n) \leq f(n) \).

So \(g(n) = O(f(n)) \).

Converse not true:

There are arbitrarily large \(n \) for which \(f(n) = \Omega(g(n)) \).

So for any constants \(c, k \), there exist an \(n \) with

\[f(n) \geq c \cdot g(n). \]
Let A_1 compute the length of the shortest TSP tour.

An algorithm for finding the tour on graph $G = (V,E)$:

1. Run A_1 on original graph. Get length L.

2. For each edge e in E:

 Change length of edge to 1 if its original value.
 Call A_1.
 If length of tour $> L$, e must be on the optimal tour.
 Return length of e to its original value.
 Else delete e from the graph.
Endif

Note: Need to delete e in case there are multiple optimal tours. Eg, if G is \Box and every edge has length 1, A_1 will return that every call of edges are not deleted.

This algorithm only calls A_1 $|E|$ times, so it is a polynomial algorithm.
3. Matching with bonds

In NP: Give list of edges. Do the edges constitute a matching? Do they satisfy the bond conditions?

NP-complete:
Reduce 3-SAT to matching with bonds.
Clause $x_i + x_j + x_k$ goes to

This component contains a matching of size 4. Only matchings of size 4 contain the three rightmost edges.

Any combination of the three rightmost edges can be extended to a matching of size 4. Hence clause being true \iff matching of size 4 is component.

For each variable introduce component

$\forall x_i$ Ensures consistency. Then get 2n bonds, one each for x_i and $\neg x_i$.

3-SAT instance true \iff 3 matching of size $\geq n + 4n$ (n clauses, n variables)
A clause is made up of three literals. If \(C_j = x_1 + x_2 + \overline{x}_3 \), \(C_j \) is true if and only if \(y_1 + y_2 + (\neg y_3) \geq 1 \), \(y_j \) being binary.

Thus, we get \(m \) inequalities from the \(m \) clauses. These inequalities can all be satisfied simultaneously if and only if we can satisfy, for example,

\[y_1 + y_2 + (\neg y_3) - \omega_1^j - \omega_2^j = 1, \]

where all variables are binary.

Notice that the l.h.s. of this inequality can only equal -1, 0, 1, 2, or 3. Thus, by choosing appropriate weights, we can sum the inequalities:

\[\sum 10^j \text{ (equality } j) \]

This can be satisfied by binary variables if and only if all the original equalities can.

E.g.: If the three equalities are:

\[y_1 + y_2 + (\neg y_3) - \omega_1^1 - \omega_2^1 = 1 \]
\[y_1 + (\neg y_2) + (\neg y_3) - \omega_1^2 - \omega_2^2 = 1 \]
\[(\neg y_1) + (\neg y_2) + y_3 - \omega_1^3 - \omega_2^3 = 1, \]

we get the equality:

\[y_1 + y_2 + (\neg y_3) - \omega_1^1 - \omega_2^1 + 10(y_1 + (\neg y_2) + (\neg y_3) - \omega_1^2 - \omega_2^2) + 100((\neg y_1) + (\neg y_2) + y_3 - \omega_1^3 - \omega_2^3) = 111 \]

Then \(a^T x = b \) is equivalent to \(a^T x \leq b \) and \(a^T x \geq b \).