1. Find the general solution of the nonhomogeneous equation

\[y'' - \frac{1}{t} y' + \frac{1}{t^2} y = -6t^2, \quad t > 0. \]

(Hint: One solution of the homogeneous equation is \(y_1 = t \).)

Since we are given \(y_1(t) \), we can use reduction of order to solve this problem. We begin by assuming our solution will be of the form

\[y(t) = v(t)y_1(t) = v(t)t. \]

Plugging this into (1), we get the following equation, and we can solve first for \(v'(t) \), then integrate to get \(v(t) \):

\[(v''(t)t + 2v'(t)) - \frac{1}{t} (v'(t)t + v(t)) + \frac{1}{t^2} v(t)t = -6t^2 \]
\[tv''(t) + v'(t) = -6t^2 \]
\[\frac{d}{dt}(tv'(t)) = -6t^2 \]
\[tv'(t) = \int (-6t^2) \, dt \]
\[tv'(t) = -2t^3 + c_1 \]
\[v'(t) = -2t^2 + c_1 t^{-1} \]
\[v(t) = \int (-2t^2 + c_1 t^{-1}) \, dt \]
\[= -\frac{2}{3} t^3 + c_1 \ln t + c_2. \]

So our solution is

\[y(t) = v(t)y_1(t) \]
\[= \left(-\frac{2}{3} t^3 + c_1 \ln t + c_2 \right) t \]
\[= -\frac{2}{3} t^4 + c_1 t \ln t + c_2 t. \]

2. A mass weighing 3 lb stretches a spring 2 in. If the mass is pushed upward, contracting the spring a distance of 2 in, and then set in motion with a downward velocity of 2 ft/sec and if there is no damping, then find the position \(u(t) \) of the mass at any time \(t \). Determine the frequency, period and amplitude of the oscillation.

We start with the equation governing this system,

\[mu'' + \gamma u' + ku = F(t). \]
We can calculate the parameters from the information given.

\[
\text{mass} = m = \frac{\text{weight}}{\text{gravity}} = \frac{3 \text{ lb}}{32 \text{ ft/s}^2} = \frac{3}{32} \text{ lb} \cdot \text{s}^2 = \frac{3}{32} \text{ slugs} \quad (15)
\]

\[
\text{damping constant} = \gamma = 0 \quad (16)
\]

\[
\text{spring constant} = k = \frac{\text{weight}}{\text{displacement}} = \frac{3 \text{ lb}}{1/6 \text{ ft}} = 18 \frac{\text{lb}}{\text{ft}} \quad (17)
\]

\[
\text{external force} = F(t) = 0. \quad (18)
\]

We are also given initial conditions \(u(0) = -2 \text{ in} \) and \(u'(0) = 2 \text{ ft/sec} \), so (14) becomes

\[
\frac{3}{32} u'' + 18u = 0, \quad u(0) = -\frac{1}{6} \text{ ft}, \quad u'(0) = 2 \text{ ft/sec} \quad (19)
\]

\[
u'' + 192u = 0. \quad (20)
\]

The characteristic equation is \(r^2 + 192 = 0\), with roots \(r = \pm 8\sqrt{3}i\). Thus our solution is

\[
u(t) = c_1 \cos \left(8\sqrt{3}t\right) + c_2 \sin \left(8\sqrt{3}t\right). \quad (21)
\]

We use the initial conditions to solve for \(c_1\) and \(c_2\).

\[
-\frac{1}{6} = u(0) = c_1 \quad (22)
\]

\[
2 = u'(0) = 8\sqrt{3}c_2 \quad \Rightarrow c_2 = \frac{1}{4\sqrt{3}}. \quad (23)
\]

So our equation for displacement of the spring is

\[
u(t) = -\frac{1}{6} \cos \left(8\sqrt{3}t\right) + \frac{1}{4\sqrt{3}} \sin \left(8\sqrt{3}t\right). \quad (24)
\]

To determine frequency, period and amplitude of the oscillation, we want to reformat our solution from

\[
u(t) = A \cos (\omega_0 t) + B \sin (\omega_0 t) \quad (25)
\]

to

\[
u(t) = R \cos (\omega_0 t + \delta), \quad (26)
\]

using the formulas

\[
A = R \cos \delta, \quad B = R \sin \delta \quad (27)
\]

which give us

\[
R = \sqrt{A^2 + B^2}, \quad \tan \delta = \frac{B}{A}. \quad (28)
\]

So in this case we have \(A = -1/6, B = 1/(4\sqrt{3})\), and the angular frequency of oscillation is \(\omega_0 = 8\sqrt{3} \text{ rad/sec}\). The period can be calculated from the angular frequency as

\[
T = \frac{2\pi}{\omega_0} = \frac{\pi}{4\sqrt{3}} \text{ sec}. \quad (29)
\]
Using (27), the amplitude is
\[R = \sqrt{A^2 + B^2} = \sqrt{\left(\frac{-1}{6}\right)^2 + \left(\frac{1}{4\sqrt{3}}\right)^2} = \frac{\sqrt{7}}{12} \text{ ft.} \] (30)

We are not asked to calculate the phase \(\delta \).

3. A spring is stretched 5 cm by a force of 2 N. A mass of 2 kg is hung from the spring and is also attached to a viscous damper that exerts a force of 2 N when the velocity of the mass is 4 m/s. If the mass is pulled down 3 cm below its equilibrium position and given an initial upward velocity of 5 cm/s, determine the position \(u(t) \) of the mass at any time \(t \).

We start with the equation governing this system,
\[mu'' + \gamma u' + ku = F(t). \] (31)

We can calculate the parameters from the information given.

mass = \(m \) = 2 kg (32)
damping constant = \(\gamma \) = \(\frac{\text{force}}{4 \text{ m/s}} \) = \(\frac{2 \text{ N}}{2 \text{ m}} = \frac{1 \text{ kg}}{2 \text{ s}} \) (33)

spring constant = \(k \) = \(\frac{\text{weight}}{\text{displacement}} \) = \(\frac{2 \text{ N}}{0.05 \text{ m}} = 40 \text{ N/m} = 40 \text{ kg/s}^2 \) (34)

external force = \(F(t) = 0 \text{ N} \). (35)

We can also determine initial conditions from the information. So (31) becomes
\[2u'' + \frac{1}{2}u' + 40u = 0, \quad u(0) = 0.03 \text{ m}, \quad u'(0) = -0.05 \text{ m/s}. \] (36)

The characteristic equation is \(2r^2 + \frac{1}{2}r + 40 = 0 \), which has roots \(r = -1/8 \pm \sqrt{1279}/8i \).

The general solution is then
\[u(t) = \exp \left[-\frac{1}{8} t \right] \left[c_1 \cos \left(\frac{\sqrt{1279}}{8} t \right) + c_2 \sin \left(\frac{\sqrt{1279}}{8} t \right) \right]. \] (37)

To find \(c_1 \) and \(c_2 \) we use the initial conditions.
\[0.03 = u(0) = c_1 \] (38)
\[-0.05 = u'(0) = \frac{\sqrt{1279}}{8} c_2 - \frac{1}{8} c_1 \quad \Rightarrow \quad c_2 = -\frac{37}{100\sqrt{1279}} \approx -0.010346. \] (39)

Thus our solution is
\[u(t) = \exp \left[-\frac{1}{8} t \right] \left[0.03 \cos \left(\frac{\sqrt{1279}}{8} t \right) - \frac{37}{100\sqrt{1279}} \sin \left(\frac{\sqrt{1279}}{8} t \right) \right]. \] (40)

4. The displacement \(u(t) \) of a mass-spring-damper system is governed by the equation
\[mu'' + \gamma u' + ku = F_0 \cos \omega t \] (41)
where \(m \) is the mass, \(\gamma \) is the damping constant, \(k \) is the spring constant, \(F_0 \) is the amplitude of the applied force, and \(\omega \) is the frequency of the periodic forcing.

(a) Consider first the undamped case with \(\gamma = 0 \). Find the value of \(\omega \) for which resonance occurs for the case \(m = 2, k = 10 \) and \(F_0 = 3 \).

Resonance occurs when the natural frequency \(\omega_0 \) equals \(\omega \), the frequency of the applied force. The natural frequency is given by \(\omega_0 = \sqrt{k/m} = \sqrt{5} \). So resonance occurs when \(\omega = \sqrt{5} \).

(b) Now consider a damped system with \(\gamma = 1 \). Determine the amplitude of the forced oscillation for the case \(m = 3, k = 2, F_0 = 1 \) and \(\omega = 1 \). (Hint: See page 208.)

Page 208 gives us the following formula for the amplitude of the forced oscillation:

\[
R = \frac{F_0}{\sqrt{m^2 (\omega_0^2 - \omega^2)^2 + \gamma^2 \omega^2}}, \quad \omega_0^2 = k/m. \tag{42}
\]

First calculate \(\omega_0^2 = k/m = 2/3 \). Then

\[
R = \frac{1}{\sqrt{3^2 (2/3 - 1)^2 + 1^2 \cdot 1^2}} = \frac{1}{\sqrt{2}}. \tag{43}
\]