CALCULUS I
Spring, 2000

QUIZ 11

Directions. Show all work to receive credit.

1. Find the most general antiderivative of:

\[f(x) = \sqrt{x} - \frac{1}{x^2} + \frac{1}{x} + 2 \]

\[x^{\frac{3}{2}} - x^{-2} + \frac{1}{x} + 2 \]

\[\int f(x) \, dx = C \]

\[\frac{2}{3} x^{\frac{3}{2}} + \frac{1}{x} + \ln x + 2x + C \]

2. Find \(g(x) \), given that:

\[g'(x) = \cos(x) \text{ and } g(\pi/2) = 3 \]

\[g(x) = \sin x + 2 \]

\[g(x) = \sin x + C \]

\[g(\pi/2) = 1 + C = 3 \]

\[C = 2 \]

-2 if C is wrong.
CALCULUS I
Spring, 2000

QUIZ 11

Directions. Show all work to receive credit.

1. Find the most general antiderivative of:

\[f(x) = x^{-1/3} - \frac{1}{x^2} + \frac{1}{x} + x \]

\[\int f(x) \, dx = \frac{3}{2} x^{2/3} + \frac{1}{x} + \ln x + \frac{1}{2} x^2 + C \]

2. Find \(g(x) \), given that:

\(g'(x) = \sin x \) and \(g(0) = -2 \)

\[g(x) = -\cos x - 1 \]

\[g(x) = -\cos x + C \]

\[g(0) = -1 + C = -2 \]

\[C = -1 \]

\(\boxed{\text{calc is wrong}} \)