Exam 4 Study Hints

Exam 4 covers sections 11.1, 11.2, 11.3, 11.5, 11.6, 11.8, 11.9, 11.10, 11.11

1. Chapter 11 Review, p. 758, TF 1-8, 12-18; Problems 1-odd, 11, 13, 16, 18, 19, 21, 23, 25, 27, 28, 32, 41, 43, 45, 47, 49, 51, 55, 57ac.

2. There will be up to 12 True-False and Multiple Choice questions on the exam. Some True-False questions may come directly from the End of Chapter review. You may see some of the iClicker questions from lecture modified as True-False questions or exactly as presented. Other Multiple Choice questions will either be conceptual or simple calculations.

3. There will be 6 twenty point problems on the exam. At least 15 points for each problem will be partial credit. Three or four of the problems will have a couple of multiple choice/true-false questions included as a small part (5 points) of the problem. The top 5 scores out of 6 will constitute your grade on the exam with the addition of any iClicker bonus points you have accumulated. A maximum of 100 points can be scored on the exam.

4. For 11.1: Be able to list out several terms of a sequence if the nth term definition is given. Be able to determine the nth term definition if a list of terms is given. Be able to determine if a sequence is convergent or divergent - if it is convergent find its limit.

5. For 11.2: Be comfortable applying partial sums, geometric series test and divergence test to determine the convergence or divergence of a series. If you are asked to find the sum of a series - be prepared to use either partial sums or geometric series test to do so. Also, be able to express a repeating decimal as a ratio of integers by writing it as a geometric series and determining the sum.

6. For 11.3: Be comfortable applying the p-test (p. 700) to determine if a series is convergent or divergent.

7. For 11.5: Be able to apply the alternating series test to determine the convergence of a series that can be written in the form \(\sum_{n=1}^{\infty} (-1)^n b_n \).

8. For 11.6: Be able to determine if a given series is absolutely convergent, conditionally convergent or divergent. Also be comfortable applying the ratio test and the root test, both of which test for absolute convergence of a series.

9. For 11.8: Be able to determine the radius and interval of convergence for a given series. For the interval of convergence - be sure to read the wording carefully on the problem to see if you need to check the endpoints of the interval for convergence.

10. For 11.9: Be able to express functions that are of the form \(\frac{a}{1-r} \) as power series by using properties of geometric series. Also, be comfortable integrating or differentiation power series (see examples 5, 6, 7 and 8a in text). Be able to state the radius of convergence for these types of problems.

11. For 11.10: Understand how to write out the Taylor(Maclaurin) expansion of a function about \(x = a \). You should be able to determine the nth term definition of the coefficient for the resulting series expansion and write your answer in summation notation. Given a Maclaurin series expansion or binomial series definition for \(f(x) \), determine a Maclaurin series for a given function that is related to \(f(x) \). Use a power series to evaluate an indefinite integral.
12. 11.11: Be able to find the nth degree Taylor(Maclaurin) polynomial to approximate \(f(x) \) given the center \(a \) and the degree \(n \). You may also be asked to use Taylor’s Inequality (formula given) to estimate the accuracy of the Taylor polynomial on an interval.

Formulas given on your test

Binomial Series
\[
(1 + x)^k = 1 + kx + \frac{k(k-1)}{2!}x^2 + \frac{k(k-1)(k-2)}{3!}x^3 + \cdots = \sum_{n=0}^{\infty} \binom{k}{n} x^n
\]
\[
\binom{k}{n} = \frac{k(k-1)(k-2)\cdots(k-n+1)}{n!}
\]

Taylor Remainder and Inequality on an interval
Given \(f(x) = T_n(x) + R_n(x) \), then \(|R_n(x)| \leq \frac{M}{(n+1)!} |x-a|^{n+1} \)
where \(M \) is the maximum value of \(|f^{(n+1)}(x)| \) on the interval and \(|x-a| \leq d \).

Directions found on the front cover of your text

Use of books, notes or calculators is **NOT** permitted.

Please show all your work! Answers without appropriate supporting work may not receive full credit.

Clearly indicate your answers to each problem by underlining them or placing a box around your answers!

Trigonometric functions at the values 0, \(\pi/6 \), \(\pi/4 \), \(\pi/3 \), \(\pi/2 \), etc must be evaluated!

True/False and Multiple Choice Questions are graded with NO PARTIAL CREDIT.

There are 5 questions on this exam. The sum of the 4 highest scores will determine your examination score.