Polynomial transformations and reductions

Let \(X_1 = (D_1, F_1) \) and \(X_2 = (D_2, F_2) \) be two feasibility problems.

Assume \(\exists \) function \(g : D_1 \rightarrow D_2 \) such that \(\forall d \in D_1, g(d) \in D_2 \).

If \(g \) is computable in time that is polynomial in the length of the encoding of \(d \), then \(X_1 \) is polynomially reducible to \(X_2 \).

Proposition

If \(X_1 \) is polynomially reducible to \(X_2 \), and \(X_2 \in \text{P} \), then \(X_1 \in \text{P} \).

Proof

Let \(\text{Alg} \) be for \(X_1 \).

1. Compute \(g \).
2. Apply \(\text{Alg} \) for \(X_2 \). //

E.g.

- \(X_1 \) is perfect matching feasibility problem on a bipartite graph, with end node of bipartite having same number of sides.
- \(X_2 \) is max flow problem and has been solved.

Reduction

Let \(X = (D, F) \) be a feasibility problem.

1. \(X_1 \) is given as example (i),
2. \(X_2 \) is perfect matching feasibility problem.

Then \(g \) is identity map.
X \times X_1$ feasibilty problem

X_i is polynomially reducible to X_2 if there exists an algorithm for X_2 which is subroutines, and the edge A_i runs in poly time under the assumption that edge A_i takes each call of the subroutine x_i once.

Ex) Any transformation of subroutine is only once, on the transformed data $g(d_i)$.

Pro: If X_i is polynomially reducible to X_2 and $X_2 \in P$ then $X_i \in P$.

Short complexity of edge is when X_i is at most

$p(i) \cdot p_2(p(i))$,

where $p(i)$ is complexity of A_i with assumption that each call of subroutine takes, and the $p_2(i)$ is the required by p_2.

We make the at most $p(i)$ times, each call of A_i has input of length at most $p(i)$ since that we have to write the output clean and clear in an upper bound i how much we can write i.
Definition: A feasibility problem \(X \in \text{NP} \) is said to be \(\text{NP-}\text{complete} \) if all other problems in \(\text{NP} \) polynomially reduce to \(X \).

(Not direction)

Theorem: If \(X \) is \(\text{NP-}\text{complete} \) and \(X \in \text{P} \) then \(\text{P}=\text{NP} \).

Proof: Any problem in \(\text{NP} \) is polynomially reducible to \(X \), and \(X \in \text{P} \), so \(\text{NP}\subseteq \text{P} \).
The problem SATISFIABILITY (SAT).

A Boolean variable \(x \) is a variable that can assume only the values true, false. Boolean variables can be combined using \(\lor \) (denoted by \(+ \)), and \(\land \) (denoted by \(\cdot \)) and \(\neg \) (denoted by \(\overline{\cdot} \)) to form Boolean formulas:

\[
\overline{x}_3 \cdot (x_1 + \overline{x}_0 + x_3)
\]

For this to be true, \(\overline{x}_3 \) must be true and \((x_1 + \overline{x}_0 + x_3)\) must be true.

If \(x_1 = \text{true} \), \(x_0 = \text{true} \), \(x_3 = \text{false} \):

- expression has value true

- \(x_1 = \text{false} \), \(x_0 = \text{false} \), \(x_3 = \text{true} \):

- expression has value false.

This formula is satisfiable since 3 assignments of variables and the expression is true.

Consider \(x_1 \cdot \overline{x}_1 \). This is not satisfiable.

Clauses are subformulas of the expression containing only \(\lor \) and \(\neg \):

- \(\overline{x}_3 \) is a clause, \(x_1 + \overline{x}_0 + x_3 \) is a clause.

Satisfiability problem:

Given \(n \) clauses \(C_1, \ldots, C_m \) involving \(n \) variables \(x_1, \ldots, x_n \), is the formula \(C_1 \lor C_2 \lor \cdots \lor C_m \) satisfiable?
Theorem (Cook)

Schrödinger is NP-complete.

Idea of proof: Build a Turing machine that solves all NP problems in NP.
Then, poly-time reduce Turing machine to SAT.

Theorem. If $X_1 \in \text{NP-complete}$ and X_2 is poly-reducible to $X_1 \in \text{NP}$, then $X_2 \in \text{NP-complete}$.

Fact. Observe, since poly-time reducibility is a transitive property.

Theorem. The 0-1 integer programming feasibility problem is NP-complete.

Let we reduce SAT to 0-1 IP form. Show how exact value of SAT

is equivalent to a 0-1 IP.
Let 3-SAT be the problem where each clause is a satisfiability problem with each clause containing exactly 3 literals.

Thus 3-SAT is NP-complete (Leave part ii as exercise).

Proof. 3-SAT is in NP since it is a special case of SAT.

To show 3-SAT is NP-complete, we reduce SAT to 3-SAT.

Consider a clause $C_i = \overline{\lambda}_1 + \lambda_2 + \ldots + \lambda_k$, and let λ_k be a literal x_i or \overline{x}_i for some i.

Assume $k \geq 3$.

Consider the clauses C_i and \overline{C}_i.

\begin{align*}
\lambda_1 + \lambda_2 + x_1 \\
\overline{x}_1 + \lambda_2 + x_3 \\
\vdots \\
x_k + \lambda_{k-1} + \lambda_k
\end{align*}

\begin{align*}
\overline{x}_1 + \lambda_2 + x_3 \\
\vdots \\
x_k + \lambda_{k-1} + \lambda_k
\end{align*}

Consider the clauses C_i and \overline{C}_i.

\begin{align*}
\lambda_1 + \lambda_2 + x_1 & \quad \text{if } \lambda_k = x_i, \text{ and let } x_i \text{ be true for some } i. \\
\overline{x}_1 + \lambda_2 + x_3 & \quad \text{if } \lambda_k = \overline{x}_i, \text{ and let } \overline{x}_i \text{ be true for some } i.
\end{align*}

If $k = 3$, use old clause in new formulation.

If $k > 3$, replace C_i by $\lambda_1 + \lambda_2 + \lambda_3$.

If $k = 2$, replace C_i by $\lambda_1 + \lambda_2 + \lambda_3$.

If $k = 1$, replace C_i by $\lambda_1 + \lambda_2 + \lambda_3$.

For each literal, we need to have y and z so be false, so add clauses:

\begin{align*}
\overline{x} + \lambda_1 + \lambda_2 \\
\overline{x} + \lambda_2 + \lambda_3 \\
x_1 + \overline{x} + \lambda_2 \\
\overline{x} + \overline{x} + \lambda_3
\end{align*}
Reducing 3-SAT to Hamiltonian Circuit

\[F = (x_1 + \overline{x}_3 + x_3)(\overline{x}_1 + x_2 + \overline{x}_3)(\overline{x}_1 + \overline{x}_2 + x_3) \]

The Hamilton circuit shown corresponds to:
- \(t(x_1) = \text{true} \)
- \(t(x_2) = \text{false} \)
- \(t(x_3) = \text{false} \)

Use subgraph \(B \) for each clause.

Connect a literal in a clause to the literal on the variable side, using the A subgraph.
Hamiltonian circuit

Given a graph G, is there a circuit visiting each node exactly once?

The Hamiltonian circuit is NP-complete.

Proof: Clearly in NP.

To show problem is NP-complete:

Transform 3-SAT to Hamiltonian circuit:

So given an instance of 3-SAT, we can create a graph such that there is a Hamiltonian tour in the graph iff the instance of 3-SAT is feasible.

Consider graph:

\[
\begin{array}{cccc}
\text{u} & 2_1 & 2_2 & 2_3 & 2_4 \\
A: & 2_1 & 2_2 & 2_3 & 2_4 \\
\text{v} & \text{u}' & \text{v}', \text{u}' & \text{v}' & \text{u}'
\end{array}
\]

Any tour of A has to traverse either node 2_i or not.

or a self loop u' or u' but not both.

Write graph as:

\[
\begin{array}{c}
\text{u} \\
A - \text{onetower}
\end{array}
\]

\[
\begin{array}{c}
\text{v} \\
\text{u}'
\end{array}
\]
Consider graph G:

![Graph Diagram]

Outside Edges only connect at u_i and u_j.

Note that any Hamiltonian circuit cannot reverse all these edges $(u_i, u_j), (u_j, u_k), (u_k, u_i)$, but it can reverse any combination of them.

With x_i:

![Graph Diagram]

So, think of reverse edge $u_j u_i$, regard linked x_j as not holding. Since x_j's reverse on edge, we have clause holding.

Have n varying clauses, is put a copy of T_i series

Class n:

![Graph Diagram]

Connect tops and bottom

Ax: A component in clause containing x, always take x, row (or line) per each clause.

Connect u_j to edge in clause in a left part of v_i, if x_j is X_i, to right part it is X_i.

Clauses:

![Graph Diagram]

Form of edge x_j:

- (false) - (true)
\[C_1 = x_1 + x_2 + x_3 \quad C_2 = x_3 + x_4 + x_5 \]

Clauses

Variables
The TSP is NP-complete.

To show NP-complete.

Reduce Hamiltonian circuit to TSP.

Let G = (V, E) be a complete graph on |V| vertices.

If (i, j) ∈ E then d_{ij} = 1

(., .) ∉ E then d_{ij} = 2.

Find \textbf{\sum}_{i=1}^{n} d_{ii} \leq |V|