More on conditional expectation

Note: Math colloquium on representation of large and sparse data sets on Monday at 4 PM in Amos Eaton 214

Some advantages of working with the more abstract formalism is that some fundamental formulas become much easier to express, particularly if they are related to the coarse-graining idea.

Law of Total Expectation:

\[
E \left[E \left[X \mid Y \right] \right] = E \left[X \right]
\]

(like a Fubini theorem)

Explain: average over everything, except keep \(Y \) fixed at whatever (random) value it is.

\(Y \) (only randomness left)

Conventional notation:

\[
E \left[X \right] = \sum_{y \in Y} \left[E \left[X \mid Y = y \right] \right] dP_Y(y)
\]

Example:

\[
S = \sum_{n=1}^{N} X_n
\]

where \(X_n \) is independent of \(S \), \(\{X_n\}_{n=1}^{\infty} \) identically distributed, and \(N \) is independent of \(S \).
and \(N \) is independent of \(\{ X_j \}_{j=1}^\infty \):

\[
\begin{align*}
\mathbb{E}[S] &= \mathbb{E}\left[\mathbb{E}[S | N] \right] \\
\mathbb{E}[S | N] &= \mathbb{E}\left[\sum_{n=1}^N X_n | N \right] \\
&= \mathbb{E}\left[\sum_{n=1}^\infty X_n \mathbb{1}\{n \leq N\} | N \right] \\
&= \sum_{n=1}^\infty \mathbb{E}[X_n \mathbb{1}\{n \leq N\} | N] \\
&= \sum_{n=1}^\infty \mathbb{1}\{n \leq N\} \mathbb{E}[X_n | N] \\
&= \sum_{n=1}^\infty \mathbb{1}\{n \leq N\} \mathbb{E}[X_n | \Xi] \\
&= \sum_{n=1}^\infty \mathbb{1}\{n \leq N\} \mathbb{E}[X_n | \Xi] \\
&= \sum_{n=1}^\infty \mathbb{1}\{n \leq N\} \mu \\
&= \mu \sum_{n=1}^N \mathbb{1}\{n \leq N\} = N \mu
\end{align*}
\]
Another fundamental law for coarse-graining

\[\text{Var } \overline{X} = ? \] Can I also calculate this in two steps like we did for the expectation of the random sum above? Yes.

Definition of conditional variance:

\[\text{Var } (X | Y) = \mathbb{E} \left((X - \mathbb{E}(X | Y))^2 \bigg/ Y \right) \]

(variability of \(X \) once the r.v. \(Y \) is specified.)

Law of Total Variance:

\[\text{Var } (X) = \mathbb{E} \left(\text{Var } (X | Y) \right) + \text{Var } (\mathbb{E}(X | Y)) \]

Proof:

\[\text{Var } (X) = \mathbb{E} \left((X - \mathbb{E} X)^2 \right) = \mathbb{E}(X^2) - (\mathbb{E}X)^2 \]

(FOIL)

\[= \mathbb{E} \left(\mathbb{E}(X^2) | Y \right) - \left(\mathbb{E} \left(\mathbb{E}(X | Y) \right) \right)^2 \]

(law of total exp.)
Lemma:
\[\text{Var}(X | Y) = \left[\mathbb{E}(X^2 | Y) - (\mathbb{E}(X | Y))^2 \right] \]

Proof of Lemma:
\[\text{Var}(X | Y) = \mathbb{E}\left[X^2 - 2XZ + Z^2 | Y \right] \]

where \(Z = \mathbb{E}[X | Y] \)

is measurable w.r.t. \(\mathcal{F}(Y) \)
\[= \mathbb{E}[X^2 | Y] - 2Z \mathbb{E}[X | Y] + Z^2 \]
\[= \mathbb{E}[X^2 | Y] - Z^2 \]

Lemma proved.

Now use lemma:
\[\text{Var}(X) = \mathbb{E}\left(\text{Var}(X | Y) + Z^2 \right) \]
\[- (\mathbb{E}(Z))^2 \]

where again \(Z = \mathbb{E}[X | Y] \)
\[\text{Var}(X) = \mathbb{E}\left(\text{Var}(X | Y) \right) \]
\[+ \mathbb{E} Z^2 - (\mathbb{E} Z)^2 \]
\[= \mathbb{E}\left(\text{Var}(X | Y) \right) + \text{Var}(Z) \]

This proves Law of Total Variance.
Filtrations of sigma-algebras and connections to stochastic processes

Suppose we are given a stochastic process $X(t, u)$

Define \mathcal{F}_t as the σ-algebra generated by cylinder sets.
Define \mathcal{F}_t as the σ-algebra generated by cylinder sets
\[\{ w \in \Omega : X(t_i) \in B_i, \ i = 1, \ldots, n \} \]
for $t_1 \leq t_2 \leq \cdots \leq t_n \leq t$ and $\{ B_i \} \in \mathcal{B}$.

\mathcal{F}_t^X is the sigma-algebra corresponding to the info generated by the stochastic process X up through time t.

This gives a family of sigma-algebras parameterized by t, and they have the following relationships:

$\mathcal{F}_s^X \subseteq \mathcal{F}_t^X$ when $s \leq t$

$X(t_j \cdot)$ is measurable w.r.t. \mathcal{F}_t^X for all t.

More generally, suppose we are given a family of σ-algebras on the prob. space Ω, $s \geq t$.

\begin{align*}
& a) \quad \mathcal{F}_s \subseteq \mathcal{F}_t \quad \text{for } 0 \leq s \leq t \\
& b) \quad \mathcal{F}_t = \bigcap_{\varepsilon \to 0^+} \mathcal{F}_{t+\varepsilon} \quad \text{(right continuous)} \\
& c) \quad \mathcal{F}_t \text{ is a complete } \sigma\text{-algebra for all } t \geq 0.
\end{align*}
The notion becomes more relevant when we talk about multiple stochastic processes operating in the same probability space, and then one may ask whether one stochastic process $X(t, w)$ has the property that $X(t, \cdot)$ is measurable w.r.t. \mathcal{F}_t then we say the stochastic process $X(t, w)$ is adapted to the filtration $\{\mathcal{F}_t\}_{t \geq 0}$.

$X(t, w)$ is always adapted to
$$\{ \mathcal{F}_t \}_{t \geq 0}.$$

The notion becomes more relevant when we talk about multiple stochastic processes operating in the same probability space, and then one may ask whether one stochastic process $X(t)$ is adapted to the filtration generated by another stochastic process $Z(t)$.

Given $Z(t, w), \mathcal{F}_t$

$$X(t, w) = \int_0^t Z(s, w) \, ds \quad \text{is adapted to} \quad \mathcal{F}_t$$

$$\mathcal{Y}(t, w) = \int_0^\infty Z(s, w) \phi(t-s) \, ds \quad \text{not adapted to}$$
For the filtered process to be adapted to the filtration generated by the original process, the filter would have to be "causal"; only filter information from the past:

\[
\mathcal{Y}(t,w) = \int_0^t \mathcal{Z}(s,w) \psi(t-s) \, ds
\]

Markov property revisited:

Let \(\mathcal{F}_t^X \) be a \(\sigma \)-algebra generated by cylinder sets:

\[
\mathcal{F}_t^X = \{ \mathcal{F}(t_i) \in \mathcal{B}_i, \, i = 1, \ldots, n \}
\]

for \(t \leq t_1 \leq t_2 \leq \ldots \leq t_n \)

and \(\{ \mathcal{B}_i \} \in \mathcal{B} \)

This is the sigma algebra corresponding to information generated by the behavior of the stochastic process \(X \) at times \(t \) and later. "The future of \(X \)"

Markov property:

For any \(A \in \mathcal{F}_t^X \)
If the above statement holds true for a stochastic process $X(t)$ which is adapted to the filtration \mathcal{F}_t, then we say that $X(t)$ has the Markov property with respect to the filtration \mathcal{F}_t.

Given the present state of the stochastic process, the future of the stochastic process is independent of the past information (as defined by the filtration).