Last time: examples of discrete-valued random variables

- Binomial
- Uniform
- Poisson
- Geometric

Geometric distribution for a r.v. X

$$\text{Prob}(X = j) = (1-q)q^j \quad \text{for } j \geq 0$$

and j an integer ($j \in \mathbb{Z}_{\geq 0}$)

Note: Usually models the probability that the first "success" in a sequence of independent, identically distributed "bernoulli trials" happens at the trial j.

$q = \text{probability of failure}

If we start with trial # 0.

If we want to start with trial # 1

$$\text{Prob}(X = j) = (1-q)q^{j-1} \quad \text{for } j \in \mathbb{N}$$
Application in genome sequencing

\[\begin{align*}
 C & \quad T & \quad T & \quad A & \quad G & \quad C & \quad dT \\
 & \quad A & \quad T & \quad C & \quad A & \quad C & \quad T & \quad A
\end{align*} \]

\[\begin{align*}
 T & \quad G & \quad C & \quad C & \quad A & \quad tT
\end{align*} \]

Several discrete-valued random variables put this in same framework by letting the state space be vector space.

Example: Rainfall = \(X_1 \in \mathbb{R}_{\geq 0} \)

Mosquito Population: \(X_2 \in \mathbb{R}_{\geq 0} \)

\# cases West Nile disease = \(X_3 \in \mathbb{R}_{\geq 0} \)

\[
 \vec{X} = \begin{pmatrix} X_1 \\ X_2 \\ X_3 \end{pmatrix}
\]

State space \(\vec{X} \in S = \mathbb{R}_{\geq 0}^3 \times \mathbb{R}_{\geq 0}^2 \)
But often care about how the random variables are related to each other.

Two r.v.'s X and Y,

- said to be independent if there is no statistical connection between them

$$\text{Prob}(X \in A \text{ and } Y \in B) = \text{Prob}(X \in A) \times \text{Prob}(Y \in B)$$

for any sets $A \subseteq S_X$: state space for X

$B \subseteq S_Y$: state space for Y

More simply for discrete cases:

$$\text{Prob}(X = x \text{ and } Y = y) = \text{Prob}(X = x) \times \text{Prob}(Y = y)$$
How quantity dependence of one random variable on another?

Covariance:
\[
\text{Cov}(X, Y) = \langle (X - \mu_X)(Y - \mu_Y) \rangle
\]
where \(\mu_X = \langle X \rangle \), \(\mu_Y = \langle Y \rangle \)

\(= 0 \) for independent \(X, Y \)

\[
\text{Fact: } \langle f(X)g(Y) \rangle = \langle f(X) \rangle \langle g(Y) \rangle
\]
if \(X \) and \(Y \) are independent

Proof: \(\langle f(X)g(Y) \rangle = \sum_{x \in S_x} \sum_{y \in S_y} f(x)g(y) \Pr(X=x, Y=y) \)

\(> 0 \) if \(X \) and \(Y \) are "positively correlated"
\[X \uparrow \Rightarrow Y \uparrow \]
\[X \downarrow \Rightarrow Y \downarrow \]

\(< 0 \) if \(X \) and \(Y \) are "negatively correlated"
\[X \uparrow \Rightarrow Y \downarrow \]
\[X \downarrow \Rightarrow Y \uparrow \]
Conditional expectation:

\[
\langle X \mid Y = y \rangle = E(X \mid Y = y) = \sum_{x \in S_X} x \cdot \text{Prob}(X = x \mid Y = y)
\]

Some other terminology:

If we have a collection \(\{ X_j \}_{j=1}^N \) of random variables,

\[
P_N(x_1, x_2, \ldots, x_N) = \text{Prob}(X_1 = x_1 \text{ and } X_2 = x_2 \ldots \text{ and } X_N = x_N)
\]

Joint probability distribution: keep track of events involving 2 or more rvs,

Marginal probability distribution:
Condenses the information down to what's necessary to study 1 r.v. at a time,

\[
p_{N,j}(x) = \text{Prob}(\bar{X}_j = x) = \sum_{x_j \in S_{X_j}} p_N(x_1, x_2, \ldots, x_{j-1}, x_j, x_{j+1}, \ldots, x_N)
\]
How strong is the correlation between 2 rvs?

Correlation coefficient

\[\rho(X, Y) = \frac{\text{Cov}(X, Y)}{\sigma_X \sigma_Y} \]

standard deviations

\[-1 \leq \rho(X, Y) \leq 1 \]

strong correlation

More general way to relate random variables is by conditional statistics.

Conditional probability

\[\text{Prob}(X = x \mid Y = y) = \frac{\text{Prob}(X = x \text{ and } Y = y)}{\text{Prob}(Y = y)} \]
Probability generating function and characteristic function - useful tools for doing complicated calculations in prob. theory

Consider a random variable X with state space $S = \mathbb{Z}_{\geq 0}$

Probability generating function

$$G_X(s) = \mathbb{E}[s^X] = \sum_{j=0}^{\infty} s^j \text{Prob}(X=j)$$

Characteristic function

$$\Phi_X(k) = \mathbb{E}[e^{ikX}] = \sum_{j \in S} e^{ikj} \text{Prob}(X=j)$$

Knowing either of these is equivalent to knowing probability distribution of X.

(Knowing $p_j = \text{Prob}(X=j)$ for $j \in S$)

$$G_X(s) = \Phi_X(-i \ln s), \quad \Phi_X(k) = G_X(e^{ik})$$
\[
\mathbf{G}_X(s) = \sum_{j=0}^{\infty} \mathbf{G}_X^{(j)} s^j \text{ Prob}(X = j)
\]

\[
\text{Prob}(X = j) = \left. \frac{1}{j!} \left(\frac{d^j}{ds^j} \right) \mathbf{G}_X(s) \right|_{s=0}
\]

Another interesting relationship:

\[
\langle X^n \rangle = \left. \left(-i \frac{d}{dk} \right)^n \mathbf{G}_X(k) \right|_{k=0}
\]

(Direct observation from \(\mathbf{G}_X(k) = \langle e^{ikX} \rangle \))

(So \(\mathbf{G}_X(k) \) is sometimes called "moment generating function")

Cumulant generating function:

\[
\mathbf{M}_{X,N} = \langle \langle X^N \rangle \rangle = \left(-i \frac{d}{dk} \right)^n \mathbf{G}_X(k)
\]

where \(N \) th order cumulant of r.v. \(X \)

\[
\tilde{\mathbf{G}}_X(k) = \ln \mathbf{G}_X(k) \] is the cumulant generating function
Cumulants are a more efficient way of organizing information contained in moments.

\[
\begin{align*}
\langle X \rangle \\
\langle X^2 \rangle \\
\sigma_X^2 &= \langle X^2 \rangle - \langle X \rangle^2
\end{align*}
\]

\[
\begin{align*}
M_{X,1} &= \langle X \rangle \\
M_{X,2} &= \langle X^2 \rangle - \langle X \rangle^2 = \sigma_X^2 \\
M_{X,3} &= \langle X^3 \rangle - 3\langle X \rangle \langle X^2 \rangle - \langle X \rangle^3
\end{align*}
\]

One way this manifests itself is joint moments.

\[
\begin{align*}
\langle X^2 Y^2 \rangle
\end{align*}
\]

Suppose \(\langle X \rangle = 0, \langle Y \rangle > 0 \).

Then one may want to look at a moment like this to look at relations in variables between \(X \) and \(Y \).

But even if \(X \) and \(Y \) don't have anything to do with each other,

\[
\begin{align*}
\langle X^2 Y^2 \rangle &= \langle X^2 \rangle \langle Y^2 \rangle \neq 0
\end{align*}
\]
But if we use cumulants...

Cumulant (joint) generating function

$$\hat{\phi}_{X,Y}(k,k') = \ln \frac{e^{ikX + ik'Y}}{e^{kX}e^{k'Y}}$$

$$M_{X,X,2,2} = \left. \left(-i \frac{\partial^2}{\partial k} \right) \left(-i \frac{\partial^2}{\partial k'} \right) \hat{\phi}_{X,Y}(k,k') \right|_{k=k'=0}$$

$$= \langle X^2 Y^2 \rangle - \langle X^2 \rangle \langle Y^2 \rangle$$

if $$\langle X \rangle = \langle Y \rangle = 0$$.

Physicist way of calculating cumulants - diagrams

"subtract off disconnected diagrams"
Back to normal generating functions.

How are these useful?
- Sometimes they're useful for calculating moments.
- Calculations involving recursive stochastic processes, and more generally stochastic processes where independent information comes in discrete chunks and in a "homogeneous" way.

Let X_1 and X_2 be independent r.v.s,

$$Y = X_1 + X_2$$

$$\Pr(Y = j) = \sum_{j' \in S} \Pr(X_1 = j' \text{ and } X_2 = j - j')$$

(independence) = \sum_{j' \in S} \Pr(X_1 = j') \Pr(X_2 = j - j')

"convolution"

Easier to work with characteristic fn or prob gen. fn.
\[G_Y(s) = \langle S X \rangle = \langle S X_1 + X_2 \rangle = \langle S X_1, S X_2 \rangle = \langle S X_1 \rangle \langle S X_2 \rangle = G_{X_1}(s) G_{X_2}(s) \]

\[S_N = X_1 + X_2 + \ldots + X_N \quad \text{with } X_j \text{ are i.i.d. independently distributed} \]

\[G_{S_N}(s) = \prod_{j=1}^{N} G_{X_j}(s) = G_{X}(s)^N \]

\[\phi_{S_N}(k) = \left(\phi_{X}(k) \right)^N \]
Example of using generating functions for calculating moments.

Binomial distribution for \(n \in \mathbb{Y} \)

\[
\text{Prob}(Y = j) = \binom{N}{j} p^j (1-p)^{N-j}
\]

\(0 < p < 1 \)

\[
\mathbb{E}[Y^n] = \sum_{j=0}^{N} j^n \binom{N}{j} p^j (1-p)^{N-j}
\]

... and even for \(n = 1, 2, \ldots \)

Probability gen. fn.

\[
G_Y(s) = \sum_{j=0}^{N} \frac{(N)_j}{j!} p^j (1-p)^{N-j} s^j
\]

\[
\text{Prob}(Y = j) = \sum_{j=0}^{N} \binom{N}{j} (ps)^j (1-p)^{N-j}
\]

\[
G_Y(s) = (1-p + ps)^N
\]

(binomial expansion formula)
No free this is consistent with

\[Y = X_1 + X_2 + \ldots + X_N \]

where \(X_j \) are i.i.d. \(\text{Prob}(X_j = 1) = p \)

\[\text{Prob}(X_j = 0) = 1 - p \]

\[G_Y(s) = \left(\frac{G_X(s)}{s} \right)^N \]

\[G_X(s) = (1 - p)s^0 + ps \]

\[< Y^n > = \left(-i \frac{d}{dk} \right)^n \phi_Y(k) \bigg|_{k=0} = \left(\frac{d}{d(\ln s)} \right)^N G_Y(s) \bigg|_{s=1} \]

\[\phi_Y(k) = G_Y(e^{ik}) \]

\[\phi_Y(k) = (1 - p + p e^{ik})^N \]

\[< Y^n > = \left(-i \frac{d}{dk} \right)^n \phi_Y(k) \bigg|_{k=0} \]

\[< Y > = Np \]

\[< Y^2 > = pN + N(N-1)p^2 \]

\[\sigma^2_Y = < Y^2 > - < Y >^2 = N(p - p^2) \]

\[\sigma_Y = \sqrt{N(p - p^2)} \]