ADVANCED CALCULUS MATH-4600
Assignment #3 Due: October 18, 2001

1. Given that the function \(z = f(x, y) \) is defined implicitly by the relation
\[z^3 + 4z - x^2 + xy^2 + 8y - 7 = 0, \]
find and test, all of the critical points of \(f \).
(Hint: Use implicit differentiation to compute \(f_x \) and \(f_y \). Then compute
the second partial derivatives.)

2. (a) By matrix theory, it is known that for any \((n \times n)\) matrix \(A \), the trace
of \(A \) \((\text{tr}(A) = \sum_{i=1}^{n} a_{ii}, \) which is the sum of its diagonal elements), \(\text{tr}(A) = \sum_{i=1}^{n} \lambda_i, \)
the sum of the eigenvalues, and \(\det(A) = \prod_{i=1}^{n} \lambda_i, \) the product of the
eigenvalues. Use this information and Theorem 2.3 of chapter 4 to show
that if \(f(x) \) is a harmonic function, that is
\[f_{x_1x_1} + f_{x_2x_2} + \cdots + f_{x_nx_n} = 0, \]
and if \(\det Hf(x_0) \neq 0 \) at a critical point \(x_0 \), then this critical point must
be a saddle point. (Actually, it is also true if \(\det Hf(x_0) = 0 \) when the
function is harmonic, but you don’t have to prove it.)
(b) Locate the critical points and illustrate the result of part (a) by the
function
\[f(x, y, z) = 2z^3 - 3x^2z - 3y^2z - 2z^2 + x^2 + y^2. \]
Note: It is acceptable to use Maple for the calculations.

3. (a) Text, p.297, #18. Method: Show that the total time
\[T(\theta_1, \theta_2) = \frac{a}{v_1 \cos \theta_1} + \frac{b}{v_2 \cos \theta_2}. \]
Notes: Observe that, if \(v_1 < v_2, \) in the end there will be incidence angles \(\theta_1, \)
so that there will be no real refraction angle \(\theta_2. \) Such a situation is referred
to as total reflection, which was considered in class. A generalization of
this result to refraction of two media separated by a curve \(h(x, y) = 0 \) is
outlined in a problem in the reference Advanced Calculus, by Amazigo &
Rubenfeld on p.152.
(b) Text: p.294, #12

(over)
4. (a) Text: p. 293, #7.
 (b) Consider the system of ODE’s, stating Newton’s second law with \(m = 1, \)
 \[
 r''(t) = F(r(t)), \quad (\dagger)
 \]
 where \(F \) is the field in part (a), with \(r(t) = (x(t), y(t)) \). Expand this system to 4 equations in four variables say \(x(t) = (x_1(t), x_2(t), x_3(t), x_4(t)) \), where \(x_1(t) = x(t), x_2(t) = x'(t), x_3(t) = y(t), \) and \(x_4(t) = y'(t) \). From (\dagger), now define the \((4 \times 4)\) linear system
 \[
 x' = G(x) := Ax - b.
 \]
 Verify that the critical point at \(c = (-\frac{1}{4}, 0, -\frac{1}{4}, 0) \) is stable by determining the eigenvalues of the matrix \(A = DG(c) \). This shows that the notion of stability of physical equilibria agrees with the mathematical definition which we encountered in differential equations.

5. (a) Text: p.375, #23.
 (b) In a simplified model of a hurricane, the velocity is taken to be purely in the circumferential direction and of magnitude
 \[
 v(r, \theta, z) = \Omega r e^{-\frac{z}{\Lambda}},
 \]
 where \(r, \theta \) and \(z \) are cylindrical coordinates measured from the eye of the hurricane at sea level, with \(\Omega, a \) and \(h \) constants. If the density \(\rho \) of the atmosphere is \(\rho(r, \theta, z) = \rho_0 e^{-\frac{z}{h}}, \) for \(\rho_0 \) constant, find the total kinetic energy
 \[
 E = \frac{1}{2} \iint_W \rho v^2 dV,
 \]
 where \(W \) is the region \(z \geq 0 \), and locate where the velocity has its maximum value. \textbf{Note:} It is acceptable to use Maple for the calculations.