Examples: 1) Birth-death processes

\[\begin{align*}
A_{i,j+1} &= \lambda_i \\
A_{i,j-1} &= \mu_i \\
A_{i,j} &= -\lambda_j - \mu_j \\
A_{i,j} &= 0 \text{ for } |i-j| \geq 2
\end{align*} \]

Many classical examples are special cases of birth-death processes:

a) Poisson counting process (arrivals, occurrence of random events)

\[\lambda_i = \lambda, \quad \mu_i = 0 \]

b) Queuing models (k servers, queue can be unbounded)

\[\lambda_i = \lambda \]
But here we actually do encounter a possible problem with the technical conditions underlying the well-posedness of birth-death processes. If we were to choose a birth-death process with

\[\lambda_i = \lambda \cdot i^2, \quad m_i = \frac{m_i \cdot i^2}{k} \]

violates the technical condition stated in Karlin and Taylor Ch. 4, p. 135 which can happen when both the birth and death rates grow as the state value becomes large. Usually this is easily fixed by taking a more realistic model, such as slowing down the birth rate at large population values.

2) Finite-state processes without linear ordering
 ○ atomic state transitions in atomic physics
 ○ conformational changes in biomolecules
 ○ climactic transitions

3) Biochemical networks

See the slides from last time.
How do we encode the list of reactions/processes into a transition rate matrix in a continuous-time Markov chain? Consider the heat shock model.

There are 9 basic molecules that are considered in that network, and they are labelled by mathematician as S_1 through S_9. Then the state of the system is described by giving the number of each type of molecule present in the system.

\[
X(t) = (X_1(t), X_2(t), \ldots, X_9(t))
\]

where $X_j(t)$ is a molecule of type j.

Note that the individual $X_j(t)$ are by themselves not typically Markov chains because their values at earlier times can create delayed reactions on themselves through loops in the reaction network. On the other hand the vector of all these individual populations $X(t)$ is generally very well modeled by a continuous time Markov chain, provided all relevant chemical species and environmental variables are taken into account.

How would we represent the process $\emptyset \rightarrow S_9$ in the transition rate matrix?

\[
A_{IJ} = \begin{cases} 4.00 \times 10^0 & \text{for } J = (x_1, x_2, \ldots, x_8, 1, x_9) \\ 7.00 \times 10^{-1} x_2 & \text{for } J = (x_1, x_2, x_3, 1, x_4, \ldots, x_9) \text{ and } x_2 \geq 1 \\ 6.3 \times 10^{-3} x_3 & \text{for } J = (x_1, x_2, x_3, x_4, x_5, x_6, \ldots, x_9) \end{cases}
\]

The real challenge is how to simulate these continuous-time Markov chains in high dimensions.

Statistical computations for Continuous-Time Markov Chains

Let's first look at finite-time statistics. We'll generally consider time-homogenous continuous-time Markov chains. So then we are given a transition rate matrix A and an initial probability distribution π_0.

How do we calculate $p_i(t)$ where $p_i(t) = \{ p_{ij}(t) \}$?

\[
p_{ij}(t) = P(\forall \ell(t) = j \text{ s.t. } \ell(t) \leq t | \ell(0) = i)
\]

Again we derive this by knowing how it behaves infinitesimally through the Chapman-Kolmogorov equation

\[
p_{ij}(t+s) = \sum_{k \in S} p_{ik}(t) p_{kj}(s)
\]
Now we will use this together with our infinitesimal description for the evolution of the probability transition function

\[P_{ij}(t + \Delta t) = \sum_{k \in S} P_{ik}(t) P_{kj}(t) \]

\[P_{ik}(t) = \delta_{ik} + A_{ik} \Delta t + o_{ik}(t) \]

\[\lim_{\Delta t \to 0} \frac{o_{ik}(t)}{\Delta t} = 0 \]

\[P_{ij}(t + \Delta t) \leq \sum_{k \in S} \left(\delta_{ik} + A_{ik} \Delta t + o_{ik}(t) \right) P_{kj}(t) = P_{ij}(t) + \Delta t \sum_{k \in S} A_{ik} P_{kj}(t) + \sum_{k \in S} o_{ik}(t) P_{kj}(t) \]

\[\frac{P_{ij}(t + \Delta t) - P_{ij}(t)}{\Delta t} \leq \sum_{k \in S} A_{ik} P_{kj}(t) + \sum_{k \in S} o_{ik}(t) P_{kj}(t) \]

\[\sum_{k \in S} o_{ik}(t) \Delta t = 0 \]

One has to be a bit careful about the error term because each term clearly goes to zero, but does the infinite sum also converge to zero? Here it's not so difficult to show because the \(\sum_{k \in S} o_{ik}(t) \Delta t = 0 \) and use dominated convergence theorem.

\[\frac{dP_{ij}(t)}{dt} = \sum_{k \in S} A_{ik} P_{kj}(t) \]

\[\frac{dP(t)}{dt} = AP(t) \]

Kolmogorov Backward Equation

\[P(t=0) = I \]
There is also the **Kolmogorov forward equation**

\[
\frac{dP(t)}{dt} = P(t)A
\]

\[P(t=0) = I\]

This is derived in the same way as the Kolmogorov backward equation, starting from the Chapman-Kolmogorov equation, but now one sets up the calculation:

\[
P_{ij}(t+\delta t) = \sum_{k=1}^{\infty} P_{ik}(t) P_{kj}(\delta t)
\]

It turns out that in the infinite-state case, the Kolmogorov backward equation is valid under wider conditions than the Kolmogorov forward equation.

Both equations, when they are well-defined have the same solution:

\[
P(t) = e^{At} = \sum_{j=0}^{\infty} \frac{(At)^j}{j!}
\]

This is well-defined and convergent certainly for finite-state matrices.

Practical ways to compute matrix exponentials for finite-state matrices:

- change basis to diagonalize the matrix

\[
A = CD D^{-1}
\]

\[
A^t = CD^t D^{-1}
\]

\[
e^{At} = CE^{D t} C^{-1}
\]

\[
D = \begin{pmatrix}
\lambda_1 & 0 & \cdots & 0 \\
0 & \lambda_2 & \cdots & 0 \\
\vdots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & \lambda_n
\end{pmatrix}
\]

\[
e^{Dt} = \begin{pmatrix}
e^{\lambda_1 t} & 0 & \cdots & 0 \\
0 & e^{\lambda_2 t} & \cdots & 0 \\
\vdots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & e^{\lambda_n t}
\end{pmatrix}
\]

"Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later," Clive Moler, Charles van Loan, SIAM Review
For the infinite state case, matrix exponentials are not so useful for computation and typically it's better just to work directly with the differential equations.

The Kolmogorov forward and backward equation give identical solutions for the probability transition function but each has a separate natural use when discussing other statistical properties of the continuous-time Markov chain.

Applied Math Days this weekend:

http://appliedmathdays.math.rpi.edu