3.4 Bases for Subspaces

1. Backsolving the given system yields \(x_1 = x_3 - x_4 \), and \(x_2 = x_4 \). Thus

\[
\begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4 \\
\end{bmatrix} = \begin{bmatrix}
x_3 - x_4 \\
x_4 \\
x_3 \\
x_4 \\
\end{bmatrix} = x_3 \begin{bmatrix}
1 \\
0 \\
1 \\
0 \\
\end{bmatrix} + x_4 \begin{bmatrix}
-1 \\
1 \\
0 \\
1 \\
\end{bmatrix}.
\]

As in Example 5, \(\{[1, 0, 1, 0]^T, [-1, 1, 0, 1]^T\} \) is a basis for \(W \).

2. Backsolving yields \(x_1 = -x_3 - 2x_4 \) and \(x_2 = 2x_3 + x_4 \).
 It follows that \(\{[-1, 2, 1, 0]^T, [-2, 1, 0, 1]^T\} \) is a basis for \(W \).

3. Writing \(x_1 = x_2 - x_3 + 3x_4 \) we have

\[
\begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4 \\
\end{bmatrix} = \begin{bmatrix}
x_2 - x_3 + 3x_4 \\
x_2 \\
x_3 \\
x_4 \\
\end{bmatrix} = x_2 \begin{bmatrix}
1 \\
1 \\
0 \\
0 \\
\end{bmatrix} + x_3 \begin{bmatrix}
-1 \\
0 \\
1 \\
0 \\
\end{bmatrix} + x_4 \begin{bmatrix}
3 \\
0 \\
0 \\
1 \\
\end{bmatrix}.
\]

Thus \(\{[1, 1, 0, 0]^T, [-1, 0, 1, 0]^T, [3, 0, 0, 1]^T\} \) is the desired basis.

4. Writing \(x_1 = x_2 - x_3 \) and noting that \(x_1, x_3 \) and \(x_4 \) are unconstrained variables, we obtain \(\{[1, 1, 0, 0]^T, [-1, 0, 1, 0]^T, [0, 0, 0, 1]^T\} \) as the desired basis.

5. Since \(x_1 = -x_2 \) we have

\[
\begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4 \\
\end{bmatrix} = \begin{bmatrix}
x_2 \\
x_2 \\
x_3 \\
x_4 \\
\end{bmatrix} = x_2 \begin{bmatrix}
-1 \\
1 \\
0 \\
0 \\
\end{bmatrix} + x_3 \begin{bmatrix}
0 \\
0 \\
1 \\
0 \\
\end{bmatrix} + x_4 \begin{bmatrix}
0 \\
0 \\
0 \\
1 \\
\end{bmatrix}.
\]

It follows that \(\{[-1, 1, 0, 0]^T, [0, 0, 1, 0]^T, [0, 0, 0, 1]^T\} \) is a basis for \(W \).

6. Backsolving yields \(x_1 = 2x_4, x_2 = 2x_4, x_3 = x_4 \). Thus \(\{[2, 2, 1, 1]^T\} \) is a basis for \(W \).

7. Backsolving yields \(x_1 = -2x_3 - x_4 \) and \(x_2 = -x_3 \). Thus

\[
\begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4 \\
\end{bmatrix} = \begin{bmatrix}
-x_3 - x_4 \\
x_3 \\
x_3 \\
x_4 \\
\end{bmatrix} = x_3 \begin{bmatrix}
-2 \\
-1 \\
1 \\
0 \\
\end{bmatrix} + x_4 \begin{bmatrix}
0 \\
0 \\
1 \\
1 \\
\end{bmatrix}.
\]

Therefore \(\{[-2, -1, 1, 0]^T, [-1, 0, 0, 1]^T\} \) is a basis for \(W \).
8. Backsolving yields \(x_1 = -x_4 \) and \(x_2 = -x_3 \). Therefore the set
\(\{ [-1,0,0,1]^T, [0,-1,1,0]^T \} \) is a basis for \(W \).

9. Let \(\{ w_1, w_2 \} \) be the basis found in Exercise 1. (a) \(x = 2w_1 + w_2 \) (b) \(x \) is not in \(W \). (c) \(x = -3w_2 \) (d) \(x = 2w_1 \).

10. Let \(\{ w_1, w_2 \} \) be the basis found in Exercise 2. (a) \(x = w_1 + w_2 \) (b) \(x = 2w_1 - w_2 \) (c) \(x \) is not in \(W \). (d) \(x = -2w_2 \).

11. (a) \(B = \begin{bmatrix} 1 & 2 & 3 & -1 \\ 0 & -1 & -1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \)

(b) Backsolving the reduced system \(Bx = \theta \) yields the solution \(x_1 = -x_3 - x_4, x_2 = -x_3 + x_4 \) for the homogeneous system \(Ax = \theta \). Thus \(x = [x_1, x_2, x_3, x_4]^T \) is in \(N(A) \) if and only if

\[
\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} -x_3 - x_4 \\ -x_3 + x_4 \\ x_3 \\ x_4 \end{bmatrix} = x_3 \begin{bmatrix} -1 \\ -1 \\ 1 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} -1 \\ 1 \\ 0 \\ 1 \end{bmatrix}
\]

It follows that \(\{ [-1, -1, 1, 0]^T, [-1, 1, 0, 1]^T \} \) is a basis for \(N(A) \).

(c) It follows from (b) that \(x_1A_1 + x_2A_2 + x_3A_3 + x_4A_4 = \theta \) if and only if \(x_1 = -x_3 - x_4 \) and \(x_2 = -x_3 + x_4 \). Since \(x_3 \) and \(x_4 \) are unconstrained variables \(\{ A_1, A_2 \} \) is a basis for \(R(A) \). Setting \(x_3 = 1 \) and \(x_4 = 0 \) yields \(x_1 = -1 \) and \(x_2 = -1 \) so \(-A_1 - A_2 + A_3 = \theta \). Therefore \(A_3 = A_1 + A_2 \). Similarly, setting \(x_3 = 0 \) and \(x_4 = 1 \) yields \(A_4 = A_1 - A_2 \).

(d) The nonzero rows of \(B \) form a basis for the row space of \(A \); that is \(\{ [1, 2, 3, -1], [0, -1, -1, 1] \} \) is the desired basis.

12. (a) \(B = \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \)

(b) The system \(Ax = \theta \) has solution \(x_1 = -x_3 \) and \(x_2 = -x_3 \). Therefore \(\{ [-1, -1, 1]^T \} \) is a basis for \(N(A) \).

(c) \(\{ A_1, A_2 \} \) is a basis for \(R(A) \) and \(A_3 = A_1 + A_2 \).

(d) \(\{ [1, 1, 2], [0, 1, 1] \} \) is a basis for the row space of \(A \).

13. (a) \(B = \begin{bmatrix} 1 & 2 & 1 & 0 \\ 0 & 1 & 1 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \).
3.4. BASES FOR SUBSPACES

(c) \(\{A_1, A_2\} \) is a basis for \(\mathcal{R}(A) \) and \(A_3 = (3/2)A_1 - A_2 \).

(d) \(\{[2, 1, 2], [0, 1, -1]\} \) is a basis for the row space of \(A \).

17. The matrix \(A^T \) is row equivalent to \(B^T = \begin{bmatrix} 1 & 3 & 1 \\ 0 & -1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \). The desired basis is \(\{[1, 3, 1]^T, [0, -1, -1]^T\} \), formed by taking the nonzero columns of \(B \).

18. The matrix \(A^T \) is row equivalent to \(B^T = \begin{bmatrix} 1 & 1 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \). The desired basis is \(\{[1, 1, 2]^T, [0, 0, 1]^T\} \), formed by taking the nonzero columns of \(B \).

19. The matrix \(A^T \) is row equivalent to \(B^T = \begin{bmatrix} 1 & 2 & 2 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \) so \(\{[1, 2, 2, 0]^T, [0, 1, -2, 1]^T\} \) is a basis for \(\mathcal{R}(A) \).

20. The matrix \(A^T \) is row equivalent to \(B^T = \begin{bmatrix} 2 & 2 & 2 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \) so \(\{[2, 2, 2]^T, [0, -1, 1]^T, [0, 0, 1]^T\} \) is a basis for \(\mathcal{R}(A) \).

21. (a) For the given vectors \(u_1 \) and \(u_2 \), the equation \(x_1 u_1 + x_2 u_2 = \theta \) has solution \(x_1 = -2x_2 \) where \(x_2 \) is an unconstrained variable. Therefore \(\{u_1\} \) is a basis for \(\text{Sp}(S) \), where \(u_1 = [1, 2]^T \).

(b) If \(A = [u_1, u_2] \) then \(A^T \) is row equivalent to \(B^T = \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix} \). Therefore \(\{[1, 2]^T\} \) is a basis for \(\text{Sp}(S) \).

22. (a) For the given vectors \(u_1, u_2 \) and \(u_3 \), the equation \(x_1 u_1 + x_2 u_2 + x_3 u_3 = \theta \) has solution \(x_1 = (-1/3)x_3 \) and \(x_2 = (-4/3)x_3 \), where \(x_3 \) is arbitrary. Thus \(\{u_1, u_2 \} \) is a basis for \(\text{Sp}(S) \), where \(u_1 = [1, 2]^T \) and \(u_2 = [2, 1]^T \).

(b) If \(A = [u_1, u_2, u_3] \) then \(A^T \) is row equivalent to \(B^T = \begin{bmatrix} 1 & 2 \\ 0 & -3 \\ 0 & 0 \end{bmatrix} \). Therefore \(\{[1, 2]^T, [0, -3]^T\} \) is a basis for \(\text{Sp}(S) \).

23. (a) For the given vectors \(u_1, u_2, u_3, u_4 \), the equation \(x_1 u_1 + x_2 u_2 + x_3 u_3 + x_4 u_4 = \theta \) has solution \(x_1 = -x_3 - 3x_4, x_2 = -x_3 + x_4 \). Since \(x_3 \) and \(x_4 \) are unconstrained variables, \(\{u_1, u_2\} \) is a basis for \(\text{Sp}(S) \), where \(u_1 = [1, 2, 1]^T \) and \(u_2 = [2, 5, 0]^T \).
(b) If \(A = [u_1, u_2, u_3, u_4] \) then \(A^T \) is row equivalent to \(B^T = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \).

Therefore \(\{[1, 2, 1]^T, [0, 1, -2]^T\} \) is a basis for \(\text{Sp}(S) \).

24. (a) For the given vectors \(u_1, u_2, u_3, u_4 \), in the equation \(x_1u_1 + x_2u_2 + x_3u_3 + x_4u_4 = \theta \), \(x_4 \) is an unconstrained variable. The desired basis is \(\{u_1, u_2, u_3\} \), where \(u_1 = [1, 2, -1, 3]^T, u_2 = [-2, 1, 2, -1]^T, \) and \(u_3 = [-1, -1, 1, -3]^T \).

(b) If \(A = [u_1, u_2, u_3, u_4] \), then \(A^T \) reduces to \(B^T = \begin{bmatrix} 1 & 2 & -1 & 3 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 5 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \). Therefore \(\{[1, 2, -1, 3]^T, [0, 1, 0, 0]^T, [0, 0, 0, 5]^T\} \) is a basis for \(\text{Sp}(S) \).

25. (a) Let \(A \) denote the given matrix. The homogeneous system \(Ax = \theta \) has solution \(x_1 = 0, x_2 \) is arbitrary, \(x_3 = 0 \). Thus \(\{[0, 1, 0]^T\} \) is a basis for \(\text{N}(A) \).

(b) Let \(A \) denote the given matrix. The system \(Ax = \theta \) has solution \(x_1 = -x_2 \), where \(x_2 \) and \(x_3 \) are arbitrary. Thus \(\{[-1, 1, 0]^T, [0, 0, 1]^T\} \) is a basis for \(\text{N}(A) \).

(c) The system \(Ax = \theta \) has solution \(x_1 = -x_2, x_3 = 0 \), where \(x_2 \) is arbitrary. The set \(\{[-1, 1, 0]^T\} \) is a basis for \(\text{N}(A) \).

26. (a) \(\{[1, 1]^T, [0, 1]^T\} \). (b) \(\{[1, 1]^T\} \). (c) \(\{[1, 1]^T, [0, 1]^T\} \).

27. The equation \(x_1v_1 + x_2v_2 + x_3v_3 = \theta \) has solution \(x_1 = -2x_3, x_2 = -3x_3, x_3 \) arbitrary. In particular, \(x_1 = -2, x_2 = -3, x_3 = 1 \) is a nontrivial solution and the set \(S \) is linearly dependent. Moreover, from \(-2v_1 - 3v_2 + v_3 = \theta \) we obtain \(v_3 = 2v_1 + 3v_2 \). If \(v \) is in \(\text{Sp}(S) \) then \(v = a_1v_1 + a_2v_2 + a_3v_3 = (a_1 + 2a_3)v_1 + (a_2 + 3a_3)v_2 \) so \(v \) is in \(\text{Sp}\{v_1, v_2\} \). It follows that \(\text{Sp}\{v_1, v_2, v_3\} = \text{Sp}\{v_1, v_2\} \).

28. The subsets \(\{v_1, v_2\}, \{v_1, v_3\}, \{v_2, v_3\} \) are bases for \(R^2 \).

29. The subsets are \(\{v_1, v_2, v_3\}, \{v_1, v_3, v_4\}, \) and \(\{v_1, v_2, v_4\} \). Note that \(v_4 = 3v_2 - v_3 \).

30. By Theorem 12 of Section 1.8, the matrix \(V = [v_1, v_2, v_3] \) is nonsingular. Thus, by Theorem 13 of Section 1.8, the system of equations \(Ax = b \) has a solution for each \(b \) in \(R^3 \); that is each vector \(b \) in \(R^3 \) can be written in the form \(x_1v_1 + x_2v_2 + x_3v_3 = b \). This shows that \(R^3 = \text{Sp}(B) \) so \(B \) is a basis for \(R^3 \).
3.5. DIMENSION

31. Set $V = \{v_1, v_2, v_3\}$. By assumption the system $Ax = b$ has a solution for every b in R^3. By Theorem 13 of Section 1.8, V is a nonsingular matrix. Therefore, by Theorem 12 of Section 1.8, the set $\{v_1, v_2, v_3\}$ is linearly independent.

32. The set S is linearly independent so, by Exercise 30, S is a basis for R^3.

33. The set S is linearly dependent so S is not a basis for R^3.

34. The set S is linearly dependent so S is not a basis for R^3.

35. If $u = [u_1, u_2, u_3]^T$ then u is in Sp(S) if and only if $4u_1 - 2u_2 + u_3 = 0$. In particular, Sp(S) $\neq R^3$ and S is not a basis for R^3.

36. A vector $w = [w_1, w_2, w_3]^T$ is in Sp($\{v_1, v_2\}$) if and only if $w_1 + w_3 = 0$. In particular $w = [0, 0, 1]^T$ is not a linear combination of v_1 and v_2.

37. (a) By Theorem 11 of Section 1.8, any set of three or more vectors in R^2 is linearly dependent and is not a basis for R^2.

(b) Suppose $\{v\}$ is a basis for R^2. Then $e_1 = a_1v$ and $e_2 = a_2v$ for some nonzero scalars a_1 and a_2. But then $a_2e_1 - a_1e_2 = 0$, contradicting the fact that $\{e_1, e_2\}$ is a linearly independent set. We conclude that $\{v\}$ is not a basis for R^2. It follows that every basis for R^2 contains exactly two vectors.

38. If $v^T = [x_1, x_2, \ldots, x_n]$ then the constraints $v^T u_i = 0, 1 \leq i \leq p$, yield a homogeneous system of p equations in the unknowns x_1, x_2, \ldots, x_n. By Theorem 4 of Section 1.4 the system has nontrivial solutions.

Suppose $v = a_1 u_1 + a_2 u_2 + \cdots + a_p u_p$. Then $\|v\|^2 = v^T v = v^T (a_1 u_1 + a_2 u_2 + \cdots + a_p u_p) = a_1 v^T u_1 + a_2 v^T u_2 + \cdots + a_p v^T u_p = 0$, contradicting that v is a nonzero vector.

39. By Theorem 11 of Section 1.8, any set of $n + 1$ or more vectors in R^n is linearly dependent so it is not a basis for R^n. By Exercise 38, any set of less than n vectors cannot span R^n. Therefore a basis for R^n must contain exactly n vectors.

3.5 Dimension

1. S contains only one vector and dim(R^2) = 2, so by property 2 of Theorem 9, S does not span R^2.

2. S does not span R^2 by property 2 of Theorem 9

3. Since S contains three vectors and dim(R^2) = 2, S is linearly dependent by property 1 of Theorem 9.
4. \(S \) is linearly dependent by property 1 of Theorem 9.

5. Since \(u_4 \neq \theta \), \(S \) is a linearly dependent set; for example \(0u_1 + au_4 = \theta \) for any nonzero scalar \(a \). Also \(S \) does not span \(\mathbb{R}^2 \) since
 \[\text{Sp}\{u_1, u_4\} = \text{Sp}\{u_1\}. \]

6. \(S \) is linearly dependent since, for example, \(3u_1 - u_2 = \theta \).

7. \(S \) contains two vectors and \(\dim(\mathbb{R}^3) = 3 \) so by property 2 of Theorem 9, \(S \) does not span \(\mathbb{R}^3 \).

8. \(S \) does not span \(\mathbb{R}^3 \) by property 2 of Theorem 9.

9. Since \(S \) contains four vectors and \(\dim(\mathbb{R}^3) = 3 \), \(S \) is linearly dependent by property 1 of Theorem 9.

10. It is easily checked that \(S \) is a linearly independent set. Therefore, by property 3 of Theorem 9, \(S \) is a basis for \(\mathbb{R}^2 \).

11. It is easily checked that \(S \) is a linearly independent set. Since \(S \) contains two vectors and \(\dim(\mathbb{R}^2) = 2 \) it follows from property 3 of Theorem 9 that \(S \) is a basis for \(\mathbb{R}^2 \).

12. The set \(S \) is linearly independent so, by property 3 of Theorem 9, \(S \) is a basis for \(\mathbb{R}^3 \).

13. It is easily shown by direct calculation that \(S \) is a linearly dependent set. Therefore \(S \) is not a basis for \(\mathbb{R}^3 \).

14. The set \(S \) is linearly independent so, by property 3 of Theorem 9, \(S \) is a basis for \(\mathbb{R}^3 \).

15. If we write \(x_1 = 2x_2 - x_3 + x_4 \) then the procedure described in Example 5 of Section 2.4 yields a basis \(\{[2, 1, 0, 0]^T, [-1, 0, 1, 0]^T, [1, 0, 0, 1]^T\} \) for \(W \). It follows that \(\dim(W) = 3 \).

16. \(\dim(W) = 3 \).

17. Following the procedure used in Example 5 of Section 2.4, we obtain a basis \(\{[1, -1, 0, 0]^T, [2, 0, -1, 0]^T\} \) for \(W \). In particular \(\dim(W) = 2 \).

18. \(\dim(W) = 2 \).

19. The set \(\{[-1, 3, 2, 1]^T\} \) is a basis for \(W \), so \(\dim(W) = 1 \).

20. \(\dim(W) = 1 \).

21. The homogeneous system \(Ax = \theta \) has solution \(x_1 = -2x_2 \).
 Therefore \(\{[-2, 1]^T\} \) is a basis for \(\mathcal{N}(A) \) and \(\text{nullity}(A) = 1 \). Since \(2 = \text{rank}(A) + \text{nullity}(A) \), it follows that \(\text{rank}(A) = 1 \).
22. The set \(\{[2, 1, 1]^T\} \) is a basis for \(N(A) \). Therefore nullity \((A) = 1 \) and rank \((A) = 2 \).

23. The homogeneous system \(Ax = \theta \) has solution \(x_1 = -5x_3, x_2 = -2x_3 \). Thus \(\{[-5, -2, 1]^T\} \) is a basis for \(N(A) \) and nullity \((A) = 1 \). Since \(3 = \text{rank} (A) + \text{nullity} (A) \), it follows that rank \((A) = 2 \).

24. The set \(\{[2, -1, 1, 0]^T\} \) is a basis for \(N(A) \). Therefore nullity \((A) = 1 \) and rank \((A) = 3 \).

25. \(A^T \) reduces to \(B^T = \begin{bmatrix} 1 & -1 & 1 \\ 0 & 2 & 3 \\ 0 & 0 & 0 \end{bmatrix} \). It follows that \(\{[1, -1, 1]^T, [0, 2, 3]^T\} \) is a basis for \(R(A) \). Consequently rank \((A) = 2 \). Since \(3 = \text{rank} (A) + \text{nullity} (A) \), it follows that nullity \((A) = 1 \).

26. The matrix \(A^T \) reduces to \(B^T = \begin{bmatrix} 1 & 2 & 2 \\ 0 & 2 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \). Therefore \(\{[1, 2, 2]^T, [0, 2, -1]^T\} \) is a basis for \(R(A) \), rank \((A) = 2 \) and nullity \((A) = 2 \).

27. (a) Following the methods of Example 7 in Section 2.4, let \(A = \begin{bmatrix} 1 & -1 & 1 & 2 \\ 1 & -2 & 0 & -1 \\ -2 & 3 & -1 & 0 \end{bmatrix} \). Then \(A^T \) reduces to \(B^T = \begin{bmatrix} 1 & 1 & -2 \\ -1 & -1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \). It follows that \(\{[1, 1, -2]^T, [0, -1, 1]^T, [0, 0, 1]^T\} \) is a basis for \(W \). In particular \(\dim(W) = 3 \).

(b) Following the procedure in (a), we obtain a basis \(\{[1, 2, -1, 1]^T, [0, 1, -1, 1]^T, [0, 0, -1, 4]^T\} \) for \(W \). In particular, \(\dim(W) = 3 \).

28. \(W = \{x \in \mathbb{R}^4 : x_1 + 2x_2 - 3x_3 - x_4 = 0 \} \). It follows that \(\dim(W) = 3 \).

29. The constraints \(a^T x = 0, b^T x = 0 \) and \(c^T x = 0 \) yield the homogeneous system of equations \(x_1 - x_2 = 0, x_1 - x_3 = 0, x_2 - x_3 = 0 \). Solving we obtain \(x_1 = x_3 \) and \(x_2 = x_3 \) where \(x_3 \) and \(x_4 \) are arbitrary. Thus \(\{[1, 1, 1, 0]^T, [0, 0, 0, 1]^T\} \) is a basis for \(W \) and \(\dim(W) = 2 \).

30. Following the procedure described in the hint, suppose we have obtained a linearly independent subset \(S_k = \{w_1, \ldots, w_k\} \) of \(W \). If \(S_k \) spans \(W \) we are done. If not there exists a vector \(w_{k+1} \) in \(W \) such that \(w_{k+1} \) is not in \(\text{Sp}(S_k) \). Suppose \(a_1 w_1 + \cdots + a_k w_k + a_{k+1} w_{k+1} = \theta \). Now \(a_{k+1} = 0 \) since otherwise we could solve for \(w_{k+1} \), contradicting that \(w_{k+1} \) is not in \(\text{Sp}(S_k) \). Since \(S_k \) is linearly independent, it follows