(b) \(x_n + 5x_{n-1} = 0 \), \(x_1 = 9 \), \(x_2 = 33 \)
\(x^2 - 5x + 4 = 0 \)
\((x-4)(x-1) = 0 \)
\(x = 4 \), \(x = 1 \)
\(x_n = A_4^1 + A_1^1 \)
\(x_1 = 9 = A_4^1 + A_1^1 \)
\(x_2 = 33 = A_4^1 + A_1^1 \)
\(x_2 = 33 = 16A_4 + A_1 \)
\(33 = 16A_4 + 9 - 4A_1 \)
\(24 = 12A_4 \)
\(A_4 = 2 \)
\(A_1 = 9 - 4A_2 \)
\(A_2 = 1 \)
Then:
\(x_n = 2 \cdot 4^n + 1 \cdot 1^n \)
\(x_n = 1 + 2 \cdot 4^n \)

(b) \(x_{n+1} = x_n + y_n \), \(y_{n+1} = \frac{3x_n - y_n}{16} \)
\(x_{n+1} = x_n + y_n \)
\(y_{n+1} = x_{n+1} - x_n \)
\(x_{n+1} = x_n + \frac{3x_n - y_n}{16} \)
\(x_{n+1} = 3x_n - y_n \)
\(x_{n+1} = x_n + 3x_n - y_n \)
\(-4x_{n+1} + 3x_n = y_n \)
\(-4x_{n+1} + 3x_n + y_n = 0 \)
\(-4x_{n+2} + x_n + y_n = 0 \)
\(-4x_{n+2} + x_n = 0 \)
\((2x-1)(2x-1) = 0 \)
\(x = \frac{1}{2}, x = -\frac{1}{2} \)
\(x_n = A\left(\frac{1}{2}\right)^n + B\left(-\frac{1}{2}\right)^n \)
(decreases w/ oscillations)
\(x_n + x_0 = 0 \)
\(x^3 + 1 = 0 \)
\(\pm \frac{\sqrt[4]{(4)(0)(1)}}{3} = \pm \frac{2}{3}i = \pm \frac{2}{3}i \)
\(a + bi \)
\(a = 0, b = 1 \)
\(r = (a^2 + b^2)^{\frac{1}{2}} = 1 \)
\(\tan \theta = \frac{b}{a} \)
\(\tan \phi = \frac{1}{2} \)
\(\phi = \frac{\pi}{2} \)
\(x_n = 1^n (\cos n\pi/2 + i\sin n\pi/2) \)
\(x_0 = C_0 \cos n\pi/2 + C_1 \sin n\pi/2 \)

16a) \(R_{n+1} = (1 - f)R_n + M_n \)

The # of RBCs in circulation on day \(n+1 \) is the # of RBCs in circulation on day \(n \) which were not removed by the spleen and the # of RBCs produced by marrow on day \(n \).

\(M_{n+1} = yS_R \)

The # of RBCs produced by marrow on \(n+1 \) is the # produced / # lost times the # of RBCs removed by the spleen.

\(M_n = R_{n+1} - (1 - f)R_n \)
\(M_{n+1} = R_{n+2} - (1 - f)R_{n+1} = yS_R \)
\(R_{n+2} - (1 - f)R_{n+1} - xS_R R_n = 0 \)
\(b = 1 - f \)
\(a = \frac{1 - (1 - f)^2 + 4xf}{2} \)

b) \(\lambda_{1,2} = \frac{1 - (1 - f)^2 + 4xf}{2} \)
\(\lambda_1 = 1 - f + \sqrt{1 - 2f + f^2 + 4xf} \)
\(\lambda_2 = 1 - f - \sqrt{1 - 2f + f^2 + 4xf} \)
\(\lambda_1, \lambda_2 \) is positive because \(\lambda_0 \) is negative.
\(R_n = A (1)^n + B \left(\frac{-1}{-f - \sqrt{1-\varepsilon^2 + 4\varepsilon^2}} \right)^n \)

since \(\lambda_1 \) is positive it must be held at 1 so that it does not continuously increase or decrease.

since \(\lambda_2 \) is \(\infty \) it will oscillate and keep \(R_n \) relatively constant.

\(R_n = A (1)^n + B \left(\frac{-1}{-f - \sqrt{1-\varepsilon^2 + 4\varepsilon^2}} \right)^n \)

\(\lambda \) must be \(-1 < \lambda \leq 0 \)

By keeping \(\lambda_1 = 1 \), this makes
\[-f - \frac{\sqrt{1-\varepsilon^2 + 4\varepsilon^2}}{2} = \frac{1}{\varepsilon} \] or
\[-f - \frac{\sqrt{1-\varepsilon^2 + 4\varepsilon^2}}{1-\varepsilon^2 + 4\varepsilon^2} = \frac{1}{\varepsilon} \]

\[x - \varepsilon + 4\varepsilon^2 = x + \varepsilon + \varepsilon^2 \]
\[-\varepsilon + 4\varepsilon^2 = \varepsilon^2 \]
\[4\varepsilon^2 = 4\varepsilon \]
\[\varepsilon = 1 \]

\(x = 1 - \frac{\sqrt{1-\varepsilon^2 + 4\varepsilon^2}}{\sqrt{1-\varepsilon^2 + 4\varepsilon^2}} \)

\(\lambda_2 = -\frac{1}{\varepsilon} - \frac{\sqrt{1-\varepsilon^2 + 4\varepsilon^2}}{\sqrt{1-\varepsilon^2 + 4\varepsilon^2}} \)

\(R_n = A \lambda_1^n + B \lambda_2^n = A (1)^n + B (-\varepsilon)^n \)

recall \(f \) is a fraction of RBC's removed.

and \(-1 < f < 0 \) \(R_n \) oscillates around \(A \)

\(R_n = A + B (-f)^n \)