Introduction

The most successful interior point methods work with both primal and dual iterates. The primal iterates \(x \) and the dual slacks \(s \) are both strictly positive at each iteration. The limit points typically satisfy strict complementarity, with either \(x_i \) or \(s_i \) strictly positive.

When the optimal primal solution is unique and nondegenerate, the limit point is the optimal BFS. In general, primal-dual interior point methods typically find solutions that are in the interior of the optimal face. We work with the standard primal-dual pair, with the dual slacks written out explicitly:

\[
\begin{align*}
\min_{x \in \mathbb{R}^n} & \quad c^T x \\
\text{subject to} & \quad Ax = b \quad (P) \\
\end{align*}
\]

\[
\begin{align*}
\max_{y \in \mathbb{R}^m, s \in \mathbb{R}^n} & \quad b^T y \\
\text{subject to} & \quad A^T y + s = c \quad (D) \\
\end{align*}
\]

The sets of optimal solutions are denoted:

\[
\begin{align*}
\Omega_P := \{ x \in \mathbb{R}^n : x \text{ solves } (P) \} \\
\Omega_D := \{ (y, s) \in \mathbb{R}^m \times \mathbb{R}^n : (y, s) \text{ solves } (D) \}
\end{align*}
\]

The following Lemma follows directly from strong duality:

Lemma 1. The sets \(\Omega_P \) and \(\Omega_D \) are either both empty or both nonempty.

Definition 1. A strictly feasible point for \((P) \) is a point \(\bar{x} \in \mathbb{R}^n \) satisfying \(A\bar{x} = b \) and \(\bar{x} > 0 \). A strictly feasible point for \((D) \) is a point \((\bar{y}, \bar{s}) \in \mathbb{R}^m \times \mathbb{R}^n \) satisfying \(A^T \bar{y} + \bar{s} = c \) and \(\bar{s} > 0 \).

Theorem 1 (Wright, Thm 2.3, page 26). Assume \((P) \) and \((D) \) are both feasible. The problem \((D) \) has a strictly feasible solution if and only if \(\Omega_P \) is nonempty and bounded. The problem \((P) \) has a strictly feasible solution if and only if \(\Omega_s := \{ s : (y, s) \in \Omega_D \} \) is nonempty and bounded.

Proof. We prove the first equivalence using a primal-dual pair of LPs, and leave the second equivalence as an exercise. Let \(z^* \) denote the optimal value of \((P) \) and \((D) \) and let \(e \) denote the vector of ones. Consider the primal-dual pair:

\[
\begin{align*}
\min_{x \in \mathbb{R}^n} & \quad -e^T x \\
\text{subject to} & \quad Ax = b \quad (Pz) \\
\end{align*}
\]

\[
\begin{align*}
\max_{y \in \mathbb{R}^m, s \in \mathbb{R}^n, \pi \in \mathbb{R}} & \quad b^T y - z^* \pi \\
\text{subject to} & \quad A^T y - c\pi + s = -e \quad (Dz) \\
\end{align*}
\]

The feasible region of \((Pz) \) is \(\Omega_P \).
Assume Ω_P is bounded: Then (P_Z) has a finite optimal value, so (D_z) is feasible, with feasible solution $(\hat{y}, \hat{s}, \hat{\pi})$. Break into cases depending on the value of $\hat{\pi}$.

- If $\hat{\pi} > 0$: Let $\bar{y} = \frac{1}{\hat{\pi}} \hat{y}$. Then $\bar{s} = c - A^T \bar{y} = \frac{1}{\hat{\pi}} (e + \hat{s}) > 0$, so (D) has a strictly feasible solution.

- If $\hat{\pi} = 0$: Let (\tilde{y}, \tilde{s}) be feasible in (D). Let $\bar{y} = \tilde{y} + \hat{y}$. Then $\bar{s} = c - A^T \bar{y} = \bar{s} - A^T \hat{y} = \bar{s} + \hat{s} + e > 0$, so (D) has a strictly feasible solution.

Assume (D) has a strictly feasible solution (\hat{y}, \hat{s}) so $\hat{s} > 0$: Let $\bar{\pi} = 1/\min \{\hat{s}_i\}$. Let $\bar{y} = \bar{\pi} \hat{y}$. Then $c \bar{\pi} - A^T \bar{y} = \hat{s} \bar{\pi} \geq e$. Rearranging gives $A^T \bar{y} - c \bar{\pi} \leq -e$, so (D_z) is feasible. Thus, (P_Z) has a finite optimal value, so Ω_P is bounded.

(See the text for an alternative proof of part of the lemma.)

2 A partition of the indices: examples

We define two subsets B and N of the indices $\{1, \ldots, n\}$:

\[
B := \{i \in \{1, \ldots, n\} : x^*_i > 0 \text{ for some } x^* \in \Omega_P\}
\]
\[
N := \{i \in \{1, \ldots, n\} : s^*_i > 0 \text{ for some } (y^*, s^*) \in \Omega_D\}
\]

From complementary slackness, we have $B \cap N = \emptyset$.

Example 1. B is the set of basic variables in the (unique) optimal BFS:

\[
\begin{align*}
\min_x & \quad 3x_1 + x_2 \\
\text{subject to} & \quad x_1 + x_2 = 1 \\
& \quad x_i \geq 0, \; i = 1, 2
\end{align*}
\]
\[
\begin{align*}
\max_{y,s} & \quad y_1 \\
\text{subject to} & \quad y_1 + s_1 = 3 \\
& \quad y_1 + s_2 = 1 \\
& \quad s_i \geq 0, \; i = 1, 2
\end{align*}
\]

The unique optimal solution is $x^* = (0, 1), \; y = 1, \; s = (2, 0)$. We have $B = \{2\}, \; N = \{1\}$.

Example 2. B is a subset of any set of basic variables.

\[
\begin{align*}
\min_x & \quad -x_1 + x_2 \\
\text{subject to} & \quad x_1 + x_2 + x_3 = 1 \\
& \quad x_1 + x_4 = 1 \\
& \quad x_i \geq 0, \; i = 1, \ldots, 4
\end{align*}
\]
\[
\begin{align*}
\max_{y,s} & \quad y_1 + y_2 \\
\text{subject to} & \quad y_1 + y_2 + s_1 = -1 \\
& \quad y_1 + s_2 = 1 \\
& \quad y_1 + s_3 = 0 \\
& \quad s_i \geq 0, \; i = 1, \ldots, 4
\end{align*}
\]

Unique optimal primal solution is $x^* = (1, 0, 0, 0)$, so $B = \{1\}$. Optimal dual solutions are $y^* = (-1, 0)$ with $s^* = (0, 2, 1, 0)$, $y^* = (0, -1)$ with $s^* = (0, 1, 0, 1)$, and any convex combination of these two solutions. Thus, $N = \{2, 3, 4\}$.

2
Example 3. \mathcal{B} is a superset of any set of basic variables.

\[
\begin{align*}
\text{min } & \quad x_1 + x_2 \\
\text{subject to } & \quad x_1 + x_2 - x_3 = 1 \\
& \quad x_i \geq 0, \ i = 1, \ldots, 3
\end{align*}
\]

\[
\begin{align*}
\text{max } & \quad y_1 \\
\text{subject to } & \quad y_1 + s_1 = 1 \\
& \quad y_1 + s_2 = 1 \\
& \quad -y_1 + s_3 = 0 \\
& \quad s_i \geq 0, \ i = 1, 2, 3
\end{align*}
\]

Optimal primal solutions are all points of the form $x^* = (t, 1 - t, 0)$ for $0 \leq t \leq 1$, so $\mathcal{B} = \{1, 2\}$. Unique optimal dual solution is $y_1^* = 1$, $s^* = (0, 0, 1)$, so $\mathcal{N} = \{3\}$.

Example 4. The problem has multiple primal and multiple dual optimal solutions.

\[
\begin{align*}
\text{min}_x & \quad x_1 + x_2 + x_3 \\
\text{subject to } & \quad 2x_1 + 3x_2 + x_3 - x_4 = 4 \\
& \quad 2x_1 + x_2 + 3x_3 - x_5 = 4 \\
& \quad x_1 + x_2 + x_3 - x_6 = 2 \\
& \quad x_1 \geq 0, \ i = 1, \ldots, 6
\end{align*}
\]

$\mathcal{B} = \{1, 2, 3\}$. These three columns are linearly dependent.

Dual problem:

\[
\begin{align*}
\text{min}_{y,s} & \quad 4y_1 + 4y_2 + 2y_3 \\
\text{subject to } & \quad 2y_1 + 2y_2 + y_3 + s_1 = 1 \\
& \quad 3y_1 + y_2 + y_3 + s_2 = 1 \\
& \quad y_1 + 3y_2 + y_3 + s_3 = 1 \\
& \quad -y_1 + s_4 = 0 \\
& \quad -y_2 + s_5 = 0 \\
& \quad -y_3 + s_6 = 0 \\
& \quad s_i \geq 0, \ i = 1, \ldots, 6
\end{align*}
\]

$\mathcal{N} = \{4, 5, 6\}$.

Note that in each example we have $\mathcal{B} \cup \mathcal{N} = \{1, \ldots, n\}$. For each problem, there is a pair of optimal solutions with $x^* + s^* > 0$: take the averages of the extreme point solutions.
3 A partition of the indices: theorem

Theorem 2 (Goldman-Tucker Strict Complementarity). For any linear program with \(\Omega_P \) and \(\Omega_D \) nonempty, it holds that \(\mathcal{B} \cup \mathcal{N} = \{1, \ldots, n\} \). There exists an optimal solution with \(x^* + s^* > 0 \).

Proof. We prove this by contradiction, so we assume \(J := \{1, \ldots, n\} \setminus (\mathcal{B} \cup \mathcal{N}) \) is nonempty. We use a theorem of the alternative. We denote the \(k \)th column of \(A \) by \(A_k \) and we let \(A_B \) denote the columns of \(A \) corresponding to \(\mathcal{B} \). Pick \(i \in J \) and set up the two systems

\[
\begin{align*}
A_i^T w &< 0 \\
-A_j^T w &\geq 0 \quad j \in J \setminus i \quad (I) \\
A_B^T z & = A_i \\
\mu &\geq 0 \\
z &\text{ free}
\end{align*}
\]

Exactly one of these two systems has a solution. The proof is very similar to Farkas and is left as an exercise.

We show that if \((I) \) is consistent then \(i \in \mathcal{N} \), and if \((II) \) is consistent then \(i \in \mathcal{B} \). In both cases, this is a contradiction.

Assume (I) holds:

Let \((y^*, s^*)\) be a point in \(\Omega_D \) with \(s^*_k > 0 \ \forall k \in \mathcal{N} \). Let \(\bar{w} \) be a solution to \((I) \).

Note that \(y^* + \epsilon w \) is feasible, at least for small positive values of \(\epsilon \), since \(s(\epsilon) = c - A^T(y^* + \epsilon w) \geq 0 \). Further, \(s_k(\epsilon) = 0 \) for \(k \in \mathcal{B} \), so \(s(\epsilon)^T x^* = 0 \) for any primal optimal \(x^* \in \Omega_P \).

In addition, \(s_i(\epsilon) > 0 \), so by the definition of \(\mathcal{N} \), we have \(i \in \mathcal{N} \). This is a contradiction.

Assume (II) holds:

Let \(\bar{\mu}, \bar{z} \) satisfy \((II) \). Let \(x^* \in \Omega_P \). The following point is feasible in \((P) \) for small positive \(\zeta \):

\[
x_k(\zeta) = \begin{cases}
 x_k^* - \zeta \bar{z}_k & \text{if } k \in \mathcal{B} \\
 \zeta & \text{if } i = k \\
 \zeta \bar{\mu}_k & \text{if } k \in J \setminus i \\
 0 & \text{if } k \in \mathcal{N}
\end{cases}
\]

Since \(s_B = 0 \) and \(s_j = 0 \ \forall j \in J \) for any \((y^*, s^*) \in \Omega_D\), we have \(x(\zeta)^T s^* = 0 \), so \(x(\zeta) \) is optimal for \((P) \). Since \(x_i(\zeta) > 0 \), we have that \(i \in \mathcal{B} \), a contradiction.

Thus, we get a contradiction in either case, so we must have \(J = \emptyset \) and \(\mathcal{B} \cup \mathcal{N} = \{1, \ldots, n\} \). \(\square \)