Examples of Network Flow Problems

John E. Mitchell

1 Shortest path problem

Definition 1. Given a directed graph \(D = (V, E) \) with a weight function \(w : E \to \mathbb{R} \) and
start and end vertices \(s, t \in V \). The weight of a \((s,t)\)-path is the sum of the weights over all
arcs in the path. The **shortest path problem** is to find the \((s,t)\)-path of minimum weight.

If all the edge weights \(w_e \) are nonnegative, the problem can be solved using Dijkstra’s
algorithm, a dynamic programming approach.

The problem can be expressed as a linear program. Let \(A \) denote the node-arc incidence
matrix, so

\[
A_{ve} = \begin{cases}
-1 & \text{if arc } e \text { leaves vertex } v \\
+1 & \text{if arc } e \text { enters vertex } v \\
0 & \text{otherwise}
\end{cases}
\]

Assume the rows of \(A \) are ordered with \(s \) the first row and \(t \) the last row. The LP formulation
is then

\[
\min_{x \in \mathbb{R}^{|E|}} \sum_{e \in E} w_e x_e \\
\text{subject to} \quad Ax = \begin{bmatrix} -1 \\ 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix} \\
x \geq 0
\]

The structure of the constraint matrix is such that any optimal BFS to this LP is binary.
(The constraint matrix is totally unimodular: the determinant of any submatrix is 0, 1,
or -1.)

The dual LP is

\[
\max_{y \in \mathbb{R}^{|V|}} \sum_{i \in V} y_i - y_s \\
\text{subject to} \quad y_j - y_i \leq w_{ij} \quad \text{for all arcs } (i,j).
\]

For any optimal solution and for any node \(j \) on the optimal path, \(y_j - y_s \) is equal to the
length of the shortest path from node \(s \) to node \(j \). This can be shown using complementary
slackness.

Exercise 1. If the graph has a negative length cycle then the dual problem is infeasible.
2 Maximum flow in a network

Definition 2. Given a directed graph $D = (V, E)$ with start and end vertices $s, t \in V$. Let each edge $e \in E$ have a capacity u_e (possibly infinite). The maximum flow problem is to maximize flow from s to t in the network.

This problem can be written as a linear program. First, we define a vector

$$d := (1, 0, \ldots, 0, -1)^T \in \mathbb{R}^{|V|}$$

The LP formulation is then

$$\max_{x \in \mathbb{R}^{|E|}, r \in \mathbb{R}} \quad r$$

subject to

$$Ax + dr = 0$$

$$x \leq u$$

$$x \geq 0$$

2.1 Cuts

Definition 3. An s–t cut is a partition (W, \bar{W}) of the nodes of V into two sets $W \ni s$ and $\bar{W} \ni t$. The capacity of the cut is

$$C(W, \bar{W}) := \sum_{(i,j) \in E, i \in W, j \in \bar{W}} u_{ij}.$$

The dual to the max flow problem is

$$\min_{\pi \in \mathbb{R}^{|V|}, y \in \mathbb{R}^{|E|}} \quad \sum_{(i,j) \in E} u_{ij} y_{ij}$$

subject to

$$\pi_j - \pi_i + y_{ij} \geq 0 \quad \text{for all } (i,j) \in E$$

$$\pi_s - \pi_t = 1$$

$$y \geq 0$$

Theorem 1. Every (s,t)-cut determines a feasible solution with cost $C(W,\bar{W})$ to the dual of the max flow problem through the assignment

$$y_{ij} = \begin{cases} 1 & \text{if } i \in W, j \in \bar{W} \\ 0 & \text{otherwise} \end{cases}$$

$$\pi_i = \begin{cases} 1 & \text{if } i \in W \\ 0 & \text{otherwise} \end{cases}$$

The proof of this theorem and the next one are left as exercises.

Theorem 2. The value of the maximum flow from s to t equals the capacity of the minimum (s,t)-cut. A flow x and a cut (W,\bar{W}) are jointly optimal if and only if

$$x_{ij} = 0 \quad \text{for all } (i, j) \in E \text{ with } i \in \bar{W}, j \in W$$

$$x_{ij} = u_{ij} \quad \text{for all } (i, j) \in E \text{ with } i \in W, j \in \bar{W}$$
2.2 Augmenting path algorithm

The augmenting path algorithm exploits the relationship between cuts and flows to find an optimal flow.

Let \(W \) be the vertices to which we can push flow from \(s \), namely vertices \(\{s, 3, 5\} \). Arc \((4, 5)\) flows backwards across the cut and carries positive flow, so this lets us augment the flow.

The largest possible value is \(\epsilon = 2 \). This gives an updated flow:

Now the cut is saturated. The value of the flow is equal to the capacity of the cut. The augmenting path algorithm runs in polynomial time provided:

- the capacities \(u_{ij} \) are all integer
- the augmented path with fewest arcs is chosen
3 Minimum cost circulation problem

Definition 4. Given a directed graph $D = (V, E)$ with a weight function $w : E \rightarrow \mathbb{R}$, with each vertex having a net demand b_v. Assume $\sum_{v \in V} b_v = 0$. Let each edge $e \in E$ have a capacity u_e (possibly infinite). A feasible flow x satisfying $0 \leq x \leq u$ has a net flow of b_v into node v for all $v \in V$. The **minimum cost circulation problem** is to meet all the demands at minimum cost.

The LP formulation for this problem is:

$$\min_{x \in \mathbb{R}^{|E|}} \quad w^T x$$

subject to

$$Ax = b$$
$$x \leq u$$
$$x \geq 0$$

The maximum flow problem can be cast as a minimum cost circulation problem:

introduce a return arc from t to s with infinite capacity and weight -1; give all other edges weight $w_e = 0$; give all vertices demand $b_v = 0$.

The network simplex algorithm (see later) is geared to the minimum cost circulation problem.