MATP6640/ISYE6770 Linear and Conic Optimization

Proving Strong Duality using Farkas

John E. Mitchell

We’ve previously proved the Farkas Lemma using strong duality. Here we show the converse. We consider the primal-dual pair:

\[
\begin{align*}
\min_{x \in \mathbb{R}^n} & \quad c^T x \\
\text{subject to} & \quad Ax = b & (P) \\
& \quad x \geq 0
\end{align*}
\]

\[
\begin{align*}
\max_{y \in \mathbb{R}^m} & \quad b^T y \\
\text{subject to} & \quad A^T y \leq c & (D) \\
& \quad y \text{ free}
\end{align*}
\]

The Farkas Lemma states that for any matrix \(A \) and appropriately dimensioned vectors \(b \) and \(c \), exactly one of the following systems has a solution:

(I) \(Ax = b, x \geq 0 \).

(II) \(A^T y \leq 0, b^T y > 0 \).

(Note: we are going to apply the Farkas Lemma using different matrices, so the parameters in the Lemma are different from those in the primal-dual pair.)

We prove the following version of the strong duality theorem:

Theorem 1. If \((P)\) has a finite optimal value \(v^* \) then

1. it has an optimal solution \(x^* \), and

2. the dual problem has an optimal solution with value \(v^* \).

We have weak duality: if \(x \) is feasible in \((P)\) and \(y \) is feasible in \((D)\) then

\[
c^T x \geq y^T Ax = b^T y. \tag{1}
\]

Apply Farkas to the systems:

\[
(III) \quad \begin{bmatrix} A & 0 \\ c^T & 1 \end{bmatrix} \begin{bmatrix} x \\ t \end{bmatrix} = \begin{bmatrix} b \\ v^* \end{bmatrix}, \quad \begin{bmatrix} x \\ t \end{bmatrix} \geq 0.
\]

\[
(IV) \quad \begin{bmatrix} A & 0 \\ c^T & 1 \end{bmatrix}^T \begin{bmatrix} y \\ w \end{bmatrix} \leq \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \quad \begin{bmatrix} b \\ v^* \end{bmatrix}^T \begin{bmatrix} y \\ w \end{bmatrix} > 0.
\]

Note that \((III)\) is equivalent to:

\[
(III') \quad Ax = b, c^T x \leq v^*, x \geq 0,
\]

and \((IV)\) is equivalent to

\[
(IV') \quad A^T y + wc \leq 0, w \leq 0, b^T y + wv^* > 0.
\]

If we can show system \((III')\) has a solution then that solution satisfies part (1) of the theorem. We try to prove this by contradiction and assume \((IV)\) has a solution \((\bar{y}, \bar{w})\). We can break into two cases:
1. \(\bar{w} = 0 \): Then \(A^T \bar{y} \leq 0 \) and \(b^T \bar{y} > 0 \), so for any \(x \) feasible for \((P)\) we have
\[
0 \geq (A^T \bar{y})^T x = \bar{y}^T (Ax) = b^T \bar{y} > 0,
\]
a contradiction.

2. \(\bar{w} < 0 \): Define \(\hat{y} = \frac{1}{\bar{w}} \bar{y} \). Since \((IV')\) holds, we obtain \(A^T \hat{y} \leq c \) and \(b^T y > v^* \), contradicting \((1)\).

Thus, \((IV)\) does \textbf{not} have a solution, so by Farkas system \((III)\) has a solution, so \((P)\) has an optimal solution.

We apply Farkas with a different pair of systems to show part (2) of the theorem. Consider the pair:

\[
(V) \quad \begin{bmatrix} A^T & -A^T & I & 0 \\ \bar{b}^T & -\bar{b}^T & 0 & -1 \end{bmatrix} \begin{bmatrix} y^+ \\ y^- \\ s \\ z \end{bmatrix} = \begin{bmatrix} c \\ v^* \end{bmatrix}, \begin{bmatrix} y^+ \\ y^- \\ s \\ z \end{bmatrix} \geq 0
\]

\[
(VI) \quad \begin{bmatrix} A^T & -A^T & I & 0 \\ \bar{b}^T & -\bar{b}^T & 0 & -1 \end{bmatrix}^T \begin{bmatrix} w \\ t \end{bmatrix} \leq \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} c \\ v^* \end{bmatrix}^T \begin{bmatrix} w \\ t \end{bmatrix} > 0
\]

Note that \((V)\) is equivalent to the system:

\[
(V') \quad A^T y \leq c, b^T y \geq v^*,
\]
with the change of variables \(y = y^+ - y^- \). If we can show \((V')\) holds then part (2) of the theorem is proved.

System \((VI)\) can be written as:
\[
Aw + tb \leq 0, -Aw - tb \leq 0, w \leq 0, t \geq 0, c^T w + tv^* > 0.
\]
Making the change of variables \(x = -w \), we get the equivalent system

\[
(VI') \quad Ax = tb, x \geq 0, t \geq 0, c^T x < tv^*.
\]
Assume \((VI')\) is consistent, with solution \((\bar{x}, \bar{t})\). We have two cases depending on the sign of \(\bar{t} \):

1. \(t = 0 \): Then there exists \(\bar{x} \geq 0 \) with \(A\bar{x} = 0 \) and \(c^T \bar{x} < 0 \). This gives a ray for \((P)\), so the primal problem does not have a finite optimal value: contradiction.

2. \(t > 0 \): Define \(\hat{x} = \frac{1}{t} \bar{x} \). We then have \(\hat{x} \geq 0, A\hat{x} = b \), and \(c^T \hat{x} < v^* \), contradicting the assumption that \((P)\) has finite optimal value \(v^* \).

Thus, System \((V)\) must be consistent, so there exists a dual optimal solution with value \(v^* \).