Expressing MaxCut as a Semidefinite Program

John E. Mitchell

Let $G = (V, E)$ be a graph with edge weights w_e. Let $n = |V|$. For any subset $U \subseteq V$, let $\delta(U)$ denote the edges in E with exactly one endpoint in U and let $E(U)$ denote the set of edges with both endpoints in U. Given a partition of V into V_1 and V_2, the value of the corresponding cut can be expressed in two ways as

$$z(V_1, V_2) = \sum_{e \in \delta(V_1)} w_e - \sum_{e \in E(V_1)} w_e - \sum_{e \in E(V_2)} w_e.$$

For notational convenience, for any missing edge $(u, v) \in (V \times V) \setminus E$, we define $w_{uv} = 0$. Combining the two formulations for MaxCut, we also have

$$z(V_1, V_2) = 0.5 \left(\sum_{e \in E} w_e - \sum_{e \in E(V_1)} w_e - \sum_{e \in E(V_2)} w_e + \sum_{e \in \delta(V_1)} w_e \right).$$

This can be expressed more concisely in terms of the Laplacian matrix of the weighted graph:

$$L_G = D_G - W_G,$$

where the entries of W_G are the edge weights w_e and where D_G is a diagonal matrix with

$$D_G(i, i) = \sum_{j \in V} w_{ij}.$$

We then have

$$z(V_1, V_2) = 0.25 x^T L_G x$$

with $x_i = 1$ if $i \in V_1$ and $x_i = -1$ if $i \in V_2$. Hence, the MaxCut problem can be written as the quadratic binary problem

$$\begin{align*}
\max_x & \quad 0.25 x^T L_G x \\
\text{subject to} & \quad x_i = \pm 1 \quad \forall i \in V.
\end{align*}$$

(1)
This problem can then be relaxed to a semidefinite program. First, note from properties of the trace function that

\[x^T L_G x = \text{trace}(x^T L_G x) = \text{trace}(L_G xx^T) \]

Now, introduce an \(n \times n \) matrix \(X \). We can express problem (1) equivalently as

\[
\begin{align*}
\max_{x, X} & \quad 0.25 \text{trace}(L_G X) \\
\text{subject to} & \quad x_i = \pm 1 \quad \forall i \in V \\
& \quad X = xx^T
\end{align*}
\]

which in turn is equivalent to the problem

\[
\begin{align*}
\max_{x, X} & \quad 0.25 \text{trace}(L_G X) \\
\text{subject to} & \quad X_{ii} = 1 \quad \text{for } i = 1, \ldots, n \\
& \quad X = xx^T
\end{align*}
\]

Since \(X = xx^T \), we must have that \(X \) is symmetric and positive semidefinite. Furthermore, it must have rank equal to 1. Relaxing the restriction on the rank, we get the following semidefinite programming relaxation of MaxCut:

\[
\begin{align*}
\max_X & \quad 0.25 \text{trace}(L_G X) \\
\text{subject to} & \quad X_{ii} = 1 \quad \text{for } i = 1, \ldots, n \\
& \quad X \succeq 0, \quad (2)
\end{align*}
\]

where the notation \(X \succeq 0 \) is equivalent to the requirement that \(X \) be symmetric and positive semidefinite.

Goemans and Williamson [1] showed that any optimal solution to (2) can be rounded to a feasible solution to MaxCut with value at least 0.878 of the optimal value of MaxCut, provided all the edge weights \(w_e \) are nonnegative. Nesterov [2] showed the corresponding ratio is \(\frac{2}{\pi} \) for general edge weights.

References
