Stochastic Programming Introduction

John E. Mitchell

Department of Mathematical Sciences
RPI, Troy, NY 12180 USA

April 2019
Outline

1. Introduction
2. A server location example
3. General formulation
4. Theoretical considerations
5. References
Introduction
In a two-stage stochastic program:
- we make an initial decision x, then
- a random scenario ξ occurs with probability p, and
- we make another (recourse) decision y.

Initial decision scenarios recourse

- Probability p_1
- Probability p_2
- Probability p_s

y^1 y^2 \vdots y^s
In a two-stage stochastic program:
- we make an initial decision x, then
- a random scenario ξ occurs with probability p, and
- we make another (recourse) decision y.

initial decision scenarios recourse

- x leads to scenarios with probabilities p_1, p_2, \ldots, p_s
 - y_1 with probability p_1
 - y_2 with probability p_2
 - y_s with probability p_s
In a two-stage stochastic program:
- we make an initial decision x, then
- a random scenario ξ occurs with probability p, and
- we make another (recourse) decision y.

initial decision scenarios recourse

$\begin{align*}
x & \rightarrow y^1 \\
 & \quad \text{probability } p_1 \\
 & \rightarrow y^2 \\
 & \quad \text{probability } p_2 \\
 & \rightarrow \cdots \\
 & \rightarrow y^s \\
 & \quad \text{probability } p_s
\end{align*}$
Objective function

The standard objective is to minimize the expected cost.

Other objective functions can be used.

For example, in robust optimization we minimize the worst scenario. In a CVaR approach we minimize the average cost of the worst few scenarios.

The scenario that is “worst” depends on the first stage decision x.

For recent surveys see [1, 2].
Outline

1. Introduction
2. A server location example
3. General formulation
4. Theoretical considerations
5. References
Stochastic server location

We have n_1 possible server locations and m possible customers.
We pay a fixed cost c_i for choosing to open a server at location i.
We must place at least one server, and no more than r servers.
We have to locate the servers before we know the integral demand $d_j(\xi)$ of the customers j.

We assume any server can serve any customer, and the profit for each unit of demand of customer j met from server i is g_{ij}.

The servers have soft capacities w_i for each server i, in that we must pay a penalty g_{i0} per unit if the demand at server i is greater than its capacity w_i.
Server location

- server locations
- customers
Server location

- server locations
- customers
Server location

- Server locations
- Customers
Server location

server locations

customers
First stage model

Let x_i denote the binary variable indicating whether or not we place a server at location i for each i.

We can model the first stage problem:

\[
\min_x \quad c^T x + \mathbb{E}(x, \xi) \\
\text{subject to} \quad e^T x \leq r \\
\quad e^T x \geq 1 \\
\quad x \in \mathbb{B}^{n_1}
\]

where e denotes the vector of ones.
Second stage model

For a given realization ξ, we introduce second stage variables y_{ij} to represent the amount of demand of customer j that is met by server i, and z_i to denote the shortfall at server i.

The second stage problem can be written

$$\min_{y,z} \quad \sum_i g_i z_i - \sum_i \sum_j g_{ij} y_{ij}$$

subject to

$$-z_i + \sum_j y_{ij} \leq w_i x_i \text{ for each server } i$$

$$\sum_i y_{ij} = d_j \text{ for each customer } j$$

z, y integer, nonnegative
Outline

1 Introduction
2 A server location example
3 General formulation
4 Theoretical considerations
5 References
General formulation

We will focus on stochastic two stage mixed integer programs with recourse. The general formulation can be written

$$\min_x \ c^T x + \mathbb{E}_\xi [Q(x, \xi)]$$
subject to $\ A x = b$
$x \in \mathcal{X}$

where the first stage decisions are $x \in \mathcal{X} \subseteq \mathbb{R}^{n_1}$, the constraint matrix A is $m_1 \times n_1$, $b \in \mathbb{R}^{m_1}$, $c \in \mathbb{R}^{n_1}$.

Further, ξ is the uncertainty, and $Q(x, \xi)$ is the cost of the recourse decision when the first stage decision is x and the uncertainty is ξ.

Thus, $Q(x, \xi)$ is the second stage cost. We take the expectation of the second stage cost over all scenarios ξ.
Second stage cost

The second stage cost

\[Q(x, \xi) = \min_y \quad q^T y \quad \text{subject to} \quad W y = h(\xi) - T(\xi) x \]

where \(y \in \mathcal{Y} \subseteq \mathbb{R}^{n_2} \), \(W \) is a fixed \(m_2 \times n_2 \) matrix, the right hand side \(h(\xi) \in \mathbb{R}^{m_2} \) depends on the uncertainty \(\xi \), and the \(m_2 \times n_2 \) technology matrix \(T(\xi) \) also depends on \(\xi \).

Note that the second stage optimization is over \(y \), with \(x \) taken as a parameter.
Integrality

The sets \mathcal{X} and \mathcal{Y} impose nonnegativity, and discrete, binary, or continuous restrictions on the first and second-stage variables, respectively.
Explicit MIP formulation

Assume we have a finite number of scenarios \(s = 1, \ldots, S \), each with probability \(p_s \).

We introduce separate copies \(y^s \) of \(y \) for each scenario \(s \).

The complete problem can then be written as an explicit mixed integer program:

\[
\begin{align*}
\min_{x,y} & \quad c^T x + \sum_{s=1}^{S} p_s q^T y^s \\
\text{subject to} & \quad Ax + T(\xi^s)x + Wy^s &= b \\
& \quad W y^s = h(\xi^s) \quad s = 1, \ldots, S \\
& \quad x \in X \\
& \quad y^s \in Y, \quad s = 1, \ldots, S
\end{align*}
\]
Constraint matrix structure

The primal constraint matrix has the structure

\[
\begin{bmatrix}
A \\
T(\xi^1) & W \\
T(\xi^2) & W \\
\vdots & \vdots \\
T(\xi^S) & W
\end{bmatrix}
\]

If the first stage variables are integral and the second-stage variables are continuous, we can use Benders decomposition.

The second stage subproblems are separable, with a different subproblem for each scenario.

This is known as the \textit{L-shaped} method in the stochastic programming literature.
Outline

1. Introduction
2. A server location example
3. General formulation
4. Theoretical considerations
5. References
Theoretical considerations

When the second stage variables are all continuous, the expectation function $\mathbb{E}_\xi [Q(x, \xi)]$ is continuous and convex.

However, if some of the second stage variables are required to be integral, this function can be discontinuous.
Example

A simple example with just one scenario, with x and y being scalar variables:

$$\min_{x,y} \quad 3x + 4y$$
subject to
$$x \leq 6$$
$$x \geq 0, \text{ integer}$$

where y solves the subproblem

$$\min_y \quad y$$
subject to
$$2y = 6 - x$$
$$y \geq 0, \text{ integer}$$

The feasible solutions require x be even. If x is odd then the subproblem is infeasible, so we can say that such a solution x has value $+\infty$.
It is common to assume *complete recourse*: the subproblem is feasible for any choice of first-stage variable that satisfies the first-stage constraints.

Under this assumption and some other assumptions, it can be shown that $\mathbb{E}_\xi [Q(x, \xi)]$ is well-defined, real valued, and lower semicontinuous, although it may still not be convex or even continuous.
Outline

1. Introduction
2. A server location example
3. General formulation
4. Theoretical considerations
5. References
References

S. Ahmed.
Two stage stochastic integer programming.

S. Küçükyavuz and S. Sen.
An introduction to two-stage stochastic mixed-integer programming.
S. Ahmed.
Two stage stochastic integer programming.

S. Küçükyavuz and S. Sen.
An introduction to two-stage stochastic mixed-integer programming.