Benders Decomposition

See Nemhauser and Wolsey, section II.3.7 and III.5.4, for more information.

Benders Decomposition reduces a mixed integer optimization problem with \(p \) continuous variables and \(n \) integer variables to one with just one continuous variable, and still \(n \) integer variables, but typically with an enormous number of constraints.

The initial problem is

\[
\begin{align*}
\max_{x,y} & \quad c^T x + h^T y \\
\text{subject to} & \quad Ax + Gy \leq b \\
& \quad x \in X \subseteq \mathbb{Z}_+^n, \ y \in \mathbb{R}_+^p
\end{align*}
\]

where \(b \in \mathbb{R}_+^m \) and \(c, h, A, \) and \(G \) are all dimensioned appropriately.

For each possible choice of \(\bar{x} \in X \), we could find the best choice for \(y \) by solving a linear program, so we could regard \(y \) as a function of \(x \). We can then replace the contribution of \(y \) to the objective by a scalar variable representing the value of the best choice for a given \(\bar{x} \). We start out with a crude approximation to this value, and then generate a sequence of dual solutions to tighten up the approximation.

Let \(x \in X \). We denote the value of the best choice for \(y \) by \(z_{LP}(x) \). The original mixed integer program can then be written as a nonconvex problem in the integer variables:

\[
\max_{x \in X} c^T x + z_{LP}(x)
\]

The function \(z_{LP}(x) \) is a concave piecewise linear function. We have

\[
z_{LP}(x) := \max_y h^T y \quad \text{subject to} \quad Gy \leq b - Ax, \ y \in \mathbb{R}_+^p
\]

By LP duality, we can also write

\[
z_{LP}(x) = \min_u (b - Ax)^T u \quad \text{subject to} \quad G^T u \geq h, \ u \in \mathbb{R}_+^m
\]

Note that the feasible region \(Q = \{u \in \mathbb{R}_+^m : G^T u \geq h\} \) for the dual problem does not depend on \(x \). We denote the extreme points and extreme rays of \(Q \) as \(K \) and \(J \) respectively:

\[
\begin{align*}
\text{extreme points:} & \quad u^k, \ k \in K \\
\text{extreme rays:} & \quad r^j, \ j \in J
\end{align*}
\]

If the inner product between \((b - Ax) \) and any ray \(r^j \) is negative then \(z_{LP}(x) = -\infty \). Equivalently, in this situation, problem (2) is infeasible, so \(x \) does not allow a feasible solution to the original problem (1). Thus, we have the valid constraints

\[
(b - Ax)^T r^j \geq 0 \quad \text{for} \ j \in J
\]
that must be satisfied by any \(x \) that is feasible in (1).

If \(x \) satisfies (4) then the value of \(z_{LP}(x) \) is given by

\[
z_{LP}(x) = \min_{k \in K} (b - Ax)^T u^k.
\]

Thus, problem (1) can be written equivalently as

\[
\max_{x,t} \quad c^T x + t
\]
subject to \((b - Ax)^T u^k \geq t\) for \(k \in K \)
\((b - Ax)^T r^j \geq 0\) for \(j \in J \)
\(t \in \mathbb{R}, x \in X\) \hspace{1cm} (5)

This problem has fewer variables than the original formulation (1), but it may have a huge number of constraints. Thus, these constraints are generated as needed, as cutting planes.

Let \(\hat{K} \subseteq K \) and \(\hat{J} \subseteq J \) denote the current known extreme points and extreme rays of \(Q \), respectively. The current relaxation of (1) and (5) is then

\[
\max_{x,t} \quad c^T x + t
\]
subject to \((b - Ax)^T u^k \geq t\) for \(k \in \hat{K} \)
\((b - Ax)^T r^j \geq 0\) for \(j \in \hat{J} \)
\(t \in \mathbb{R}, x \in X\) \hspace{1cm} (6)

The scalar variable \(t \) represents an estimate of \(z_{LP}(x) \).

The algorithm can then be written:

1. Determine (possibly empty) initial sets \(\hat{K} \) of extreme points and \(\hat{J} \) of extreme rays of \(Q \).
2. Solve problem (6), giving solution \(\bar{x} \) and corresponding \(\bar{t} \).
3. Determine \(z_{LP}(\bar{x}) \) by solving (3).
4. If \(z_{LP}(\bar{x}) = -\infty \), an extreme ray of \(Q \) has been found. Add the extreme ray to \(\hat{J} \) and return to Step 2.
5. If \(z_{LP}(\bar{x}) < \bar{t} \) and finite, an extreme point of \(Q \) has been found. Add the extreme point to \(\hat{K} \) and return to Step 2.
6. If \(z_{LP}(\bar{x}) = \bar{t} \) then \(\bar{x} \) solves (1), with optimal \(y \) equal to the solution to (2) with \(x = \bar{x} \).