Integer and Combinatorial Optimization: The Christofides Heuristic

John E. Mitchell

Department of Mathematical Sciences
RPI, Troy, NY 12180 USA

February 2019
The Traveling Salesman Problem

Given a graph \(G = (V, E) \), a \textbf{Hamiltonian tour} is a cycle that contains all of the nodes.

If each edge \(e \) has a length \(d_e \), the \textbf{traveling salesman problem} is to find the tour with least total length.
The Christofides heuristic is a polynomial time algorithm that constructs a tour.

If the edge lengths satisfy the triangle inequality then the heuristic is guaranteed to be within 50% of optimality.

This is the best known bound for any polynomial heuristic for the class of traveling salesman problems satisfying the triangle inequality.
The Christofides Heuristic

1. Given a complete graph with vertices V and edge lengths d_e for $e \in E$.
2. Find a minimum weight spanning tree S on the graph.
3. Let $U \subseteq V$ be the vertices with odd degree in S.
4. Find a minimum weight perfect matching M on the vertices U.
5. Find an Eulerian walk on the edges of $M \cup S$.
6. If any node is visited more than once, shortcut the tour.
7. The resulting collection of edges is a tour.
The Christofides Heuristic

1. Given a complete graph with vertices V and edge lengths d_e for $e \in E$.
2. Find a minimum weight spanning tree S on the graph.
3. Let $U \subseteq V$ be the vertices with odd degree in S.
4. Find a minimum weight perfect matching M on the vertices U.
5. Find an Eulerian walk on the edges of $M \cup S$.
6. If any node is visited more than once, shortcut the tour.
7. The resulting collection of edges is a tour.
Given a complete graph with vertices V and edge lengths d_e for $e \in E$.

Find a minimum weight spanning tree S on the graph.

Let $U \subseteq V$ be the vertices with odd degree in S.

Find a minimum weight perfect matching M on the vertices U.

Find an Eulerian walk on the edges of $M \cup S$.

If any node is visited more than once, shortcut the tour.

The resulting collection of edges is a tour.
The Christofides Heuristic

1. Given a complete graph with vertices V and edge lengths d_e for $e \in E$.
2. Find a minimum weight spanning tree S on the graph.
3. Let $U \subseteq V$ be the vertices with odd degree in S.
4. Find a minimum weight perfect matching M on the vertices U.
5. Find an Eulerian walk on the edges of $M \cup S$.
6. If any node is visited more than once, shortcut the tour.
7. The resulting collection of edges is a tour.
The Christofides Heuristic

1. Given a complete graph with vertices \(V \) and edge lengths \(d_e \) for \(e \in E \).
2. Find a *minimum weight spanning tree* \(S \) on the graph.
3. Let \(U \subseteq V \) be the vertices with odd degree in \(S \).
4. Find a *minimum weight perfect matching* \(M \) on the vertices \(U \).
5. Find an Eulerian walk on the edges of \(M \cup S \).
6. If any node is visited more than once, shortcut the tour.
7. The resulting collection of edges is a tour.
The Christofides Heuristic

1. Given a complete graph with vertices V and edge lengths d_e for $e \in E$.
2. Find a minimum weight spanning tree S on the graph.
3. Let $U \subseteq V$ be the vertices with odd degree in S.
4. Find a minimum weight perfect matching M on the vertices U.
5. Find an Eulerian walk on the edges of $M \cup S$.
6. If any node is visited more than once, shortcut the tour.
7. The resulting collection of edges is a tour.
The Christofides Heuristic

1. Given a complete graph with vertices \(V \) and edge lengths \(d_e \) for \(e \in E \).
2. Find a \textit{minimum weight spanning tree} \(S \) on the graph.
3. Let \(U \subseteq V \) be the vertices with odd degree in \(S \).
4. Find a \textit{minimum weight perfect matching} \(M \) on the vertices \(U \).
5. Find an Eulerian walk on the edges of \(M \cup S \).
6. If any node is visited more than once, shortcut the tour.
7. The resulting collection of edges is a tour.
An example

spanning tree
An example

nodes with odd degree
An example

matching
An example

Eulerian walk

Mitchell

The Christofides Heuristic
An example

Shortcut at node 3
An example

Hamiltonian path
Why does this give a tour?

Since the number of edges in the spanning tree S is $|V| - 1$, the total degree of the nodes in the spanning tree is $2(|V| - 1)$, an even number. Therefore, there must be an even number of nodes with odd degree, so a perfect matching exists.

Every vertex has even degree in the connected set of edges $S \cup M$, so an Eulerian walk exists, that is, a walk that traverses each edge in $M \cup S$ exactly once.

Note that some edges may be in both M and S, so these edges are traversed once as part of M and once as part of S.
The triangle inequality

In the example, the edge lengths are the Euclidean distances between the vertices. These all satisfy the triangle inequality:

\[d_{rt} \leq d_{rs} + d_{st} \quad \text{for any vertices } r, s, t \in V \]

We assume all edge lengths satisfy the triangle inequality.

This is satisfied, for example, by graphs corresponding to destinations on a plane with distances equal to Euclidean distances.

Theorem

The Christofides heuristic produces a tour that is no more than 50% longer than the length of the optimal tour.
Proof of performance guarantee: the tree

Let T^* be an optimal tour, with length $l(T^*)$.

The length $l(S)$ of the minimum spanning tree S is no greater than the length of the optimal tour, since every tour contains a spanning tree.

Thus $l(S) \leq l(T^*)$.
Proof of performance guarantee: the matching

The length $l(M)$ of the optimal matching M is no greater than half the length of the optimal tour:

a tour can be broken into two perfect matchings (plus one additional edge if the number of vertices is odd).

Since the triangle inequality holds, the matching M is at least as good as the better of these two matchings obtained from the tour.

Thus, $l(M) \leq \frac{1}{2} l(T^*)$.

Break tour into 2 parts.
Shortcut to get 2 perfect matchings.
Proof of performance guarantee: overall

Since the triangle inequality holds, shortcutting the tour to avoid visiting a vertex more than once can only shorten the length of the tour. Thus, the tour T found by the heuristic has length $l(T)$ satisfying

$$l(T) \leq l(S) + l(M).$$

Therefore, $l(T) \leq \frac{3}{2} l(T^*)$. □
Achieving the worst case bound

In the notation of the proof, to have $I(T) = \frac{3}{2} I(T^*)$ we would have to have $I(S) = I(T^*)$ and $I(M) = \frac{1}{2} I(T^*)$.

If all the edge lengths are positive, we will always have $I(S) < I(T^*)$, so we will not achieve the worst-case bound.

We can get arbitrarily close, as in the following example.
Approaching the worst case

Let n be odd and arrange the vertices in two lines. The distance between neighbors in the same line is $1 + \epsilon$ for some small positive ϵ; the distance between neighbors in different lines is 1.
Approaching the worst case

Let \(n \) be odd and arrange the vertices in two lines. The distance between neighbors in the same line is \(1 + \varepsilon \) for some small positive \(\varepsilon \); the distance between neighbors in different lines is 1.

nodes with odd degree
Approaching the worst case

Let n be odd and arrange the vertices in two lines. The distance between neighbors in the same line is $1 + \varepsilon$ for some small positive ε; the distance between neighbors in different lines is 1.

Diagram:

1 2 3 4 5 6

matching, and Hamiltonian tour
Length of tour

The length of this tour is

\[l(S) = n - 1 \quad \text{for the edges in the spanning tree} \]
\[l(M) = (1 + \epsilon) \frac{n-1}{2} \quad \text{for the edge in the matching} \]
\[l(T) = (3 + \epsilon) \frac{n-1}{2} \quad \text{for the tour} \]
A worst-case example

Optimal tour

This has length

\[l(T^*) = 2 + (n - 2)(1 + \epsilon) \]

The ratio of these tour lengths is

\[
\frac{l(T)}{l(T^*)} = \frac{(3 + \epsilon)(n - 1)}{2(2 + (n - 2)(1 + \epsilon))} \rightarrow \frac{3}{2}
\]

as \(n \rightarrow \infty \), \(\epsilon \rightarrow 0 \).