1 Clustering

We have \(n \) objects, each with a number of attributes. We wish to group similar objects into clusters. There is no limit on the number of clusters, or on the size of each cluster. We have a measure \(c_{ij} \) of the difference between two objects \(i \) and \(j \); the larger this measure, the less similar the objects. This measure can take positive or negative values.

We model this by introducing variables
\[
x_{ij} = \begin{cases} 1 & \text{if } i \text{ and } j \text{ in same cluster} \\ 0 & \text{if } i \text{ and } j \text{ in different clusters} \end{cases} \quad \text{for } 1 \leq i < j \leq n
\]

Let \(S \subseteq \mathbb{B}^{\binom{n}{2}} \) be the set of feasible solutions. We have the following results regarding \(\text{conv}(S) \):

Proposition 1 The set \(S \) is full-dimensional.

One way to prove this is to note that the origin and all the unit vectors are in \(S \).

Proposition 2 The lower bound constraints \(x_{ij} > 0 \) define facets of \(\text{conv}(S) \).

Proposition 3 Let \(1 \leq i < j < k \leq n \). The triangle inequalities
\[
-x_{ij} + x_{ik} + x_{jk} \leq 1
\]
define facets of \(\text{conv}(S) \).

These inequalities enforce consistency. For example, the first one says that if \(i \) and \(j \) are in the same cluster and also \(i \) and \(k \) are in the same cluster then \(j \) and \(k \) must be in the same cluster. The only binary solution violating this constraint is \(x_{ij} = x_{ik} = 1, x_{jk} = 0 \).

Proposition 4 Any binary vector satisfying all the triangle inequalities is the incidence vector of a clustering.

The upper bound constraints \(x_{ij} \leq 1 \) do not define facets of \(\text{conv}(S) \). In particular, if \(x_{ij} = 1 \) then we must also have \(x_{ij} + x_{ik} - x_{jk} = 1 \) and \(x_{ij} - x_{ik} + x_{jk} = 1 \) for each other \(k \).

The following proposition generalizes the lower bound and triangle inequalities.

Proposition 5 (2-partition inequalities) Let \(U \) and \(W \) be disjoint collections of objects with \(|U| > |W| \). The following inequality defines a facet of \(\text{conv}(S) \):
\[
\sum_{i \in U, j \in W} x_{ij} - \sum_{i \in U, j \in U} x_{ij} - \sum_{i \in W, j \in W} x_{ij} \leq |W|.
\]

This gives the lower bound constraints when \(|U| = 2 \), \(|W| = 0 \). It gives the triangle constraints when \(|U| = 2 \), \(|W| = 1 \).

Note that if all the \(c_{ij} \) are nonnegative then the optimal solution is to place each object in its own cluster, so all \(x_{ij} = 0 \). Thus, our measure \(c_{ij} \) cannot simply be the distance between two objects, but must allow negative values if we are to have an interesting problem.

For more details, see [3, 4].
2 Equipartition

Given a graph \(G = (V, E) \) with \(n = |V| = 2q \) for some integer \(q \), we partition \(V \) into two sets of size \(q \). We define the variables \(x_{ij} = \begin{cases} 1 & \text{if } i \text{ and } j \text{ in same partition} \\ 0 & \text{if } i \text{ and } j \text{ in different partitions} \end{cases} \) for \(1 \leq i < j \leq n \).

Let \(S \) be the set of feasible incidence vectors of equipartitions.

We have the following results:

Proposition 6 The dimension of \(\text{conv}(S) \) is \(\frac{1}{2}n(n-3) \). If \(C \) is a cycle with \(q + 1 \) vertices then the inequality \(x(E(C)) \leq q - 1 \) is facet defining. If \(U \subseteq V \) with \(|U| \geq 3 \) and odd, the clique inequality \(x(E(U)) \geq \lfloor \frac{1}{2}|U| \rfloor^2 \) is facet-defining.

Other inequalities are known [1, 2].

3 Clustering with lower bound

Now consider a clustering problem where we require each cluster to contain at least \(q \) elements, for some positive integer \(q \). For example, this problem arises in the following settings:

- allocating teams to divisions in a sports league. In this case, often require each division to have the same cardinality.

- microaggregation in the release of data: in order to preserve privacy, clusters with tiny sizes must be avoided.

Let \(S \subseteq \mathbb{B}^\frac{1}{2}n(n-1) \) be the set of incidence vectors of clusterings where each cluster contains at least \(q \) elements. We have the following results regarding \(\text{conv}(S) \):

Proposition 7 If \(q < n/2 \) then \(\dim(\text{conv}(S)) = \frac{1}{2}n(n-1) \), so \(S \) is full-dimensional.

Proposition 8 The nonnegativity constraints and the triangle constraints of Proposition 3 define facets of \(\text{conv}(S) \), provided \(q < n/3 \). The 2-partition inequalities of Proposition 5 define facets of \(\text{conv}(S) \) provided \((|W|+2)q < n\).

Other families of valid inequalities are also known [5, 6].

References

