We show how the dimension of a face can be determined using the construction of affinely independent points. This approach can be used to prove that a face of a polyhedron is a facet. Later, we will demonstrate another method for the MaxCut problem.

Recall two equivalent definitions of affine independence:

Definition 1 The \(k+1 \) points \(a^0, a^1, \ldots, a^k \in \mathbb{R}^n \) are affinely independent if the \(k \) vectors \(a^1 - a^0, a^2 - a^0, \ldots, a^k - a^0 \) are linearly independent.

Definition 2 The \(k+1 \) points \(a^0, a^1, \ldots, a^k \in \mathbb{R}^n \) are affinely independent if the only solution \(\lambda_0, \lambda_1, \ldots, \lambda_k \) to the system

\[
\sum_{i=0}^{k} \lambda_i a^i = 0, \quad \sum_{i=0}^{k} \lambda_i = 0
\]

is \(\lambda_0 = \lambda_1 = \ldots = \lambda_k = 0 \).

Note that Definition 2 implies that if \(k+1 \) points are linearly independent then they are also affinely independent. (The converse does not necessarily hold.)

We also have the following proposition:

Proposition 1 If a set \(S \subseteq \mathbb{R}^n \) contains \(k+1 \) affinely independent points then the dimension of \(S \) is at least \(k \).

Thus, constructing a sufficiently large set of affinely independent points in \(S \) provides a lower bound on the dimension of \(S \). If we can construct valid equalities \(Ax = b \) that are satisfied by all points in \(S \) then we obtain an upper bound of \(n - \text{rank}(A) \) on the dimension of \(S \). Getting these bounds to agree would then give the dimension of \(S \).

When \(S \) is a set of integer (or binary) points, the first step is to determine the dimension \(d \) of \(S \). To then show that an inequality \(g^T x \geq h \) defines a facet of \(S \), we need to:

- Show every point \(x \) in \(S \) satisfies \(g^T x \geq h \), so the inequality is valid.
- Find \(d \) affinely independent points in \(S \) satisfying \(g^T x = h \), so the dimension of the face is at least \(d - 1 \).
- Find one point \(x \in S \) satisfying \(g^T x > h \), so the inequality defines a proper face of \(S \).

This approach is used for node packing in a graph on \(n \) vertices.

First, the convex hull of the set \(S \) of feasible packings can be shown to have dimension \(n \): we have \(n+1 \) affinely independent points in \(S \), namely the origin and all the unit vectors.

Then there exist \(n \) affinely independent points in \(S \) satisfying \(x_i = 0 \) for any \(i = 1, \ldots, n \). Further, there exist \(n \) affinely independent points in \(S \) satisfying \(\sum_{i \in C} x_i = 1 \) for any maximal clique \(C \) in the graph.