Integer and Combinatorial Optimization:
Gomory Cuts for Matching Problems

John E. Mitchell

Department of Mathematical Sciences
RPI, Troy, NY 12180 USA

February 2019
Minimum weight perfect matching

Let $G = (V, E)$ be a graph with edge weights w_e for $e \in E$. Consider the problem of finding a minimum weight perfect matching on the following graph:

![Graph with edge weights](image_url)
IP formulation

The minimum weight perfect matching problem for this graph is

$$\min_x \sum_{e \in E} w_e x_e$$
subject to

- $x_{ab} + x_{ac} + x_{ad} = 1$
- $x_{ab} + x_{bc} + x_{bg} = 1$
- $x_{ac} + x_{bc} + x_{cf} = 1$
- $x_{df} + x_{dg} + x_{ad} = 1$
- $x_{df} + x_{fg} + x_{cf} = 1$
- $x_{dg} + x_{fg} + x_{bg} = 1$

x_e binary $\forall e \in E$
The LP relaxation can be written as the following tableau:

\[
\begin{array}{cccccccc}
 x_{ab} & x_{ac} & x_{bc} & x_{df} & x_{dg} & x_{fg} & x_{ad} & x_{cf} & x_{bg} \\
 0 & 2 & 3 & 1 & 1 & 2 & 3 & 7 & 8 & 9 \\
 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\
 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\
 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\
 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 \\
\end{array}
\]
Solution to LP relaxation

The optimal tableau is

<table>
<thead>
<tr>
<th></th>
<th>x_{ab}</th>
<th>x_{ac}</th>
<th>x_{bc}</th>
<th>x_{df}</th>
<th>x_{dg}</th>
<th>x_{fg}</th>
<th>x_{ad}</th>
<th>x_{cf}</th>
<th>x_{bg}</th>
</tr>
</thead>
<tbody>
<tr>
<td>-6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>1/2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>$1/2$</td>
<td>$1/2$</td>
<td>$-1/2$</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>$1/1$</td>
<td>$1/1$</td>
<td>$1/1$</td>
</tr>
<tr>
<td>1/2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>$-1/2$</td>
<td>$2/2$</td>
<td>$1/2$</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>$1/1$</td>
<td>$2/1$</td>
<td>$1/1$</td>
</tr>
<tr>
<td>1/2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>$1/2$</td>
<td>$1/2$</td>
<td>$2/2$</td>
</tr>
<tr>
<td>1/2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>$-1/2$</td>
<td>$1/2$</td>
<td>$1/1$</td>
</tr>
</tbody>
</table>

Each of the constraints give the same Gomory cut, namely

$$\frac{1}{2}x_{ad} + \frac{1}{2}x_{cf} + \frac{1}{2}x_{bg} \geq \frac{1}{2}$$
Each of the constraints give the same Gomory cut, namely

\[\frac{1}{2}x_{ad} + \frac{1}{2}x_{cf} + \frac{1}{2}x_{bg} \geq \frac{1}{2} \]
Gomory cut
Each of the constraints give the same Gomory cut, namely
\[
\frac{1}{2} x_{ad} + \frac{1}{2} x_{cf} + \frac{1}{2} x_{bg} \geq \frac{1}{2}
\]
Denote the slack variable in this constraint by \(s \). Adding the constraint to the tableau and reoptimizing gives an optimal simplex tableau of

<table>
<thead>
<tr>
<th>(x_{ab})</th>
<th>(x_{ac})</th>
<th>(x_{bc})</th>
<th>(x_{df})</th>
<th>(x_{dg})</th>
<th>(x_{fg})</th>
<th>(x_{ad})</th>
<th>(x_{cf})</th>
<th>(x_{bg})</th>
<th>(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>−11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>−1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>−1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>−1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>−1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Since solution to LP relaxation is integral, it solves original problem. Minimum perfect matching: edges \((b, c)\), \((f, g)\), and \((a, d)\), value 11.
The optimal solution
Subtour elimination constraints

The Gomory cutting plane is a rescaling of the subtour elimination constraint

\[x_{ad} + x_{cf} + x_{bg} \geq 1, \]

which is equivalent to

\[x_{ab} + x_{ac} + x_{bc} \leq 1, \]

as can be determined by adding together the first three original constraints, each with weight \(\frac{1}{2} \).

\[
\begin{align*}
 x_{ab} + x_{ac} + x_{ad} &= 1 \\
 x_{ab} + x_{bc} + x_{bg} &= 1 \\
 x_{ac} + x_{bc} + x_{cf} &= 1 \\
 x_{ab} + x_{ac} + x_{bc} + \frac{1}{2} x_{ad} + \frac{1}{2} x_{bg} + \frac{1}{2} x_{cf} &= \frac{3}{2}
\end{align*}
\]

It is also equivalent to

\[x_{df} + x_{dg} + x_{fg} \leq 1 : \]

add together the last three original constraints, each with weight \(\frac{1}{2} \).
Can't use more than
\(\frac{|U|-1 \text{ edges in } E(U)}{2} \)

Add degree constraints for u \in U, with weight \(t \):

\[
\sum_{e \in E(U)} x_e + \frac{1}{2} \sum_{e \in S(U)} x_e = \frac{1}{2} |U|\]

in 2 degree constraints

\(\sum_{e \in E(U)} x_e \leq \frac{|U|-1}{2} \)

in 1 degree constraint in our sum