Integer and Combinatorial Optimization:
Node Packing is NP-Complete

John E. Mitchell

Department of Mathematical Sciences
RPI, Troy, NY 12180 USA

January 2019
Node packing

Definition

A node packing on a graph $G = (V, E)$ is a subset $U \subseteq V$ of the vertices so that no two vertices in U are adjacent.

Example:

- $U = \{4, 5\}$ is a node packing of cardinality 2.

Definition

Let $G = (V, E)$ be a graph and let z be a positive integer. The unweighted node packing with lower bound problem is to determine whether there is a node packing of cardinality at least z.

Mitchell

Node Packing is NP-Complete
Node packing

Definition

A node packing on a graph \(G = (V, E) \) is a subset \(U \subseteq V \) of the vertices so that no two vertices in \(U \) are adjacent.

\[U = \{4, 5\} \] is a node packing of cardinality 2

Definition

Let \(G = (V, E) \) be a graph and let \(z \) be a positive integer. The unweighted node packing with lower bound problem is to determine whether there is a node packing of cardinality at least \(z \).
Theorem

The unweighted node packing with lower bound problem is \(NP \)-complete.

First show the problem is in \(NP \):
Our certificate of feasibility consists of a list of the nodes in \(U \).

We can check quickly that none of these vertices are adjacent, and there are at least \(z \) of them.
Polynomial transformation

We show that 3-SAT can be polynomially transformed to our node packing problem.

We have an instance of 3-SAT with *n* boolean variables \(y_1, \ldots, y_n \) and *m* clauses \(C_1, \ldots, C_m \), with each clause containing exactly 3 literals.

We construct a graph with \(3m \) vertices which has a node packing of size at least *m* if and only if the instance of 3-SAT is feasible.

A clique of size 3 is constructed corresponding to each clause.

One vertex is constructed for each literal in the clause, and three edges are constructed so the three vertices are adjacent to each other.
Mapping a clause to a clique

\[C_i = y_j + y_k + \bar{y}_l \]

\[C_i \rightarrow k_i \quad (n + l)_i \quad j_i \]
Ensuring consistency
Any packing of cardinality m must contain exactly one vertex from each of these m cliques.

This vertex is a “representative” for the clause.

We need to add additional edges to ensure consistency between clauses.

Thus, if the representative for clause i is j_i then that corresponds to $y_j = \text{TRUE}$, so there cannot be another chosen representative for another clause which corresponds to $y_j = \text{FALSE}$.

Consistency can be ensured by adding edges of the form $(j_i, (n + j_q))$ for any two clauses C_i and C_q, where y_j is a literal in clause C_i and \bar{y}_j is a literal in clause C_q.

This prevents us having simultaneously:
- $y_j = \text{TRUE}$ as the representative for clause C_i, and
- $y_j = \text{FALSE}$ as the representative for clause C_q.
Ensuring consistency

Any packing of cardinality \(m \) must contain exactly one vertex from each of these \(m \) cliques.

This vertex is a “representative” for the clause.

We need to add additional edges to ensure consistency between clauses.

Thus, if the representative for clause \(i \) is \(j_i \) then that corresponds to \(y_j = \text{TRUE} \), so there cannot be another chosen representative for another clause which corresponds to \(y_j = \text{FALSE} \).

Consistency can be ensured by adding edges of the form \((j_i, (n + j)_q)\) for any two clauses \(C_i \) and \(C_q \), where \(y_j \) is a literal in clause \(C_i \) and \(\bar{y}_j \) is a literal in clause \(C_q \).

This prevents us having simultaneously:

- \(y_j = \text{TRUE} \) as the representative for clause \(C_i \), and
- \(y_j = \text{FALSE} \) as the representative for clause \(C_q \).
Example

\[C_1 = y_1 + y_2 + \bar{y}_3 \]
\[C_2 = y_2 + y_3 + \bar{y}_4 \]
\[C_3 = \bar{y}_1 + \bar{y}_2 + y_4 \]
Example

\[C_1 = y_1 + y_2 + \bar{y}_3 \]
\[C_2 = y_2 + y_3 + \bar{y}_4 \]
\[C_3 = \bar{y}_1 + \bar{y}_2 + y_4 \]
Example

\[C_1 = y_1 + y_2 + \bar{y}_3 \]
\[C_2 = y_2 + y_3 + \bar{y}_4 \]
\[C_3 = \bar{y}_1 + \bar{y}_2 + y_4 \]
Example

\[C_1 = y_1 + y_2 + \bar{y}_3 \]
\[C_2 = y_2 + y_3 + \bar{y}_4 \]
\[C_3 = \bar{y}_1 + \bar{y}_2 + y_4 \]
Example

\[C_1 = y_1 + y_2 + \bar{y}_3 \]
\[C_2 = y_2 + y_3 + \bar{y}_4 \]
\[C_3 = \bar{y}_1 + \bar{y}_2 + y_4 \]
Example

\[C_1 = y_1 + y_2 + \bar{y}_3 \]
\[C_2 = y_2 + y_3 + \bar{y}_4 \]
\[C_3 = \bar{y}_1 + \bar{y}_2 + y_4 \]
Example

\[C_1 = y_1 + y_2 + \bar{y}_3 \]
\[C_2 = y_2 + y_3 + \bar{y}_4 \]
\[C_3 = \bar{y}_1 + \bar{y}_2 + y_4 \]

There are many packings of cardinality 3, including \(U = \{1_1, 8_2, 6_3\} \). This corresponds to the valid truth assignment

\[y_1 = \text{TRUE}, \quad y_4 = \text{FALSE}, \quad y_2 = \text{FALSE}, \quad y_3 \text{ unspecified.} \]
Vertex cover

Given a graph $G = (V, E)$, a vertex cover is a subset $U \subseteq V$ of the vertices so that every edge in E has at least one endpoint in U.

The vertex cover with upper bound problem is specified by a graph $G = (V, E)$ and a scalar K, and it is desired to find a vertex cover with cardinality $|U| \leq K$.

Exercise

Show that vertex cover with upper bound is NP-complete, by transforming from node packing with lower bound.

Hint: If W is a node packing in graph $G = (V, E)$ then its complement $U = V \setminus W$ is a vertex cover.
A vertex cover illustration

node packing
A vertex cover illustration

vertex cover