Integer and Combinatorial Optimization: Matching Problems

John E. Mitchell

Department of Mathematical Sciences
RPI, Troy, NY 12180 USA

January 2019
Matchings

We have a graph $G = (V, E)$. A matching in G is a subset $M \subseteq E$ so that no two edges in M share an endpoint.

In a perfect matching M, every vertex $v \in V$ is the endpoint of exactly one edge in M. The matching in the picture is a perfect matching.
Matchings

We have a graph $G = (V, E)$. A matching in G is a subset $M \subseteq E$ so that no two edges in M share an endpoint.

In a perfect matching M, every vertex $v \in V$ is the endpoint of exactly one edge in M. The matching in the picture is a perfect matching.
Weighted matching problems

The edges $e \in E$ can have weights w_e. We may be interested in finding a maximum weight matching, or a minimum weight perfect matching. These problems cannot be solved using a greedy algorithm.

For example, a greedy approach fails to find a maximum weight matching for the following graph:
Weighted matching problems

The edges $e \in E$ can have weights w_e. We may be interested in finding a **maximum weight matching**, or a **minimum weight perfect matching**. These problems **cannot be solved using a greedy algorithm**.

For example, a greedy approach fails to find a maximum weight matching for the following graph:

Greedy solution:
Weighted matching problems

The edges $e \in E$ can have weights w_e. We may be interested in finding a **maximum weight matching**, or a **minimum weight perfect matching**. These problems **cannot be solved using a greedy algorithm**.

For example, a greedy approach fails to find a maximum weight matching for the following graph:

Optimal solution:
Solving (weighted) matching problems

Nonetheless, the problems can be solved in polynomial time by using an alternating path method:

Find a path that alternates between matched and unmatched edges, and swap them.

When the graph is bipartite, can solve the problem by solving an assignment problem. May need to add edges with value 0, or dummy nodes.