1 The minimum spanning tree problem (MST)

We have a graph \(G = (V, E) \) with weight \(w_e \) for each edge \(e \in E \). We want to find a spanning tree \(T \subseteq E \) that has minimum weight \(\sum_{e \in T} w_e \).

Let \(n = |V| \), \(m = |E| \).

2 The number of feasible solutions

Lemma 1. For a complete graph on \(n \) vertices, the number of spanning trees is \(n^{n-2} \).

Proof. (Sketch)

Label the vertices \(1, \ldots, n \). Let \(T \) be a spanning tree, so \(T \) has \(n-1 \) edges and at least two leaves. We construct a sequence of length \(n-2 \) using the following loop.

Initialize with \(S = \emptyset \). For \(i = 1, \ldots, n-2 \):

1. Let \(v_i \) be the lowest index leaf in the tree.
2. Let \(a_i \) denote the neighbor of \(v_i \) in the tree.
3. Add \(a_i \) to the end of the sequence \(S \).
4. Delete leaf \(v_i \) from \(T \).

The ordered string \(S \) consists of \(n-2 \) integers, each with a value between 1 and \(n \). Note that the last edge remaining in the tree after \(n-2 \) deletions is an edge between vertex \(n \) and one other vertex (vertex \(a_{n-2} \) if \(n \neq a_{n-2} \)).

It can also be shown that any sequence of \(n-2 \) integers valued between 1 and \(n \) (with repeats allowed) corresponds to a unique spanning tree.

Thus, we have a 1-to-1 correspondence between spanning trees and this set of sequences, which has cardinality \(n^{n-2} \).

Example with \(n = 6 \):

Sequence: \(2 - 1 - 1 - 1 \).
3 Solving the MST

Minimum spanning tree problems can be solved using a **greedy algorithm**:

1. Initialize: $T = \emptyset$
2. Let e be the edge with smallest weight that has not yet been considered.
3. If $T \cup \{e\}$ is acyclic, update $T \leftarrow T \cup \{e\}$; else delete e.
4. Return to Step 2.

Very quick sketch of proof: Let \hat{T} be the tree returned by the greedy algorithm. Let T^* be the optimal tree. Assume the shortest $k < n - 1$ edges in each tree are the same. Then we can add edge e_{k+1} from \hat{T} to T^* and remove something on the fundamental cycle created in $T^* \cup e_{k+1}$. This tree will be at least as good as T^* and will have the same shortest $k + 1$ edges as \hat{T}. By induction, we obtain that \hat{T} is optimal. □

An example of the greedy algorithm

One solution: