Graph Theory Definitions

John E. Mitchell

Department of Mathematical Sciences
RPI, Troy, NY 12180 USA

January 22, 2019
1. Fundamentals
2. Adjacency
3. Paths and Cycles
4. Connected graphs
5. Subgraphs
6. Trees
Outline

1. Fundamentals
2. Adjacency
3. Paths and Cycles
4. Connected graphs
5. Subgraphs
6. Trees
A graph $G = (V, E)$ is made up of

1. A finite nonempty set $V = \{v_1, \ldots, v_n\}$ of nodes or vertices.

2. A set $E = \{e_1, \ldots, e_m\}$ of edges, where each element e_j is a subset of V of size 2.

Simple graphs: A simple graph is one that contains

- no parallel edges, that is, there is at most one edge between any pair of vertices.

- no loops, that is, no edges of the form (i, i).

Unless otherwise stated, we will be working with simple graphs.
A graph \(G = (V, E) \) is made up of:

1. A finite nonempty set \(V = \{v_1, \ldots, v_n\} \) of nodes or vertices.
2. A set \(E = \{e_1, \ldots, e_m\} \) of edges, where each element \(e_j \) is a subset of \(V \) of size 2.

Simple graphs: A simple graph is one that contains:

- no parallel edges, that is, there is at most one edge between any pair of vertices.
- no loops, that is, no edges of the form \((i, i)\).

Unless otherwise stated, we will be working with simple graphs.
A graph $G = (V, E)$ is made up of:
1. A finite nonempty set $V = \{v_1, \ldots, v_n\}$ of nodes or vertices.
2. A set $E = \{e_1, \ldots, e_m\}$ of edges, where each element e_j is a subset of V of size 2.

Simple graphs: A simple graph is one that contains:
1. no parallel edges, that is, there is at most one edge between any pair of vertices.
2. no loops, that is, no edges of the form (i, i).

Unless otherwise stated, we will be working with simple graphs.
A graph $G = (V, E)$ is made up of

1. A finite nonempty set $V = \{v_1, \ldots, v_n\}$ of nodes or vertices.
2. A set $E = \{e_1, \ldots, e_m\}$ of edges, where each element e_j is a subset of V of size 2.

Simple graphs: A simple graph is one that contains

1. no parallel edges, that is, there is at most one edge between any pair of vertices.
2. no loops, that is, no edges of the form (i, i).

Unless otherwise stated, we will be working with simple graphs.
A graph $G = (V, E)$ is made up of

1. A finite nonempty set $V = \{v_1, \ldots, v_n\}$ of nodes or vertices.
2. A set $E = \{e_1, \ldots, e_m\}$ of edges, where each element e_j is a subset of V of size 2.

Simple graphs: A simple graph is one that contains

1. no parallel edges, that is, there is at most one edge between any pair of vertices.
2. no loops, that is, no edges of the form (i, i).

Unless otherwise stated, we will be working with simple graphs.
A graph $G = (V, E)$ is made up of
1. A finite nonempty set $V = \{v_1, \ldots, v_n\}$ of nodes or vertices.
2. A set $E = \{e_1, \ldots, e_m\}$ of edges, where each element e_j is a subset of V of size 2.

Simple graphs: A simple graph is one that contains
1. no parallel edges, that is, there is at most one edge between any pair of vertices.
2. no loops, that is, no edges of the form (i, i).

Unless otherwise stated, we will be working with simple graphs.
Bipartite graphs

A graph $G = (V, E)$ is **bipartite** if there is a partition of the vertices V into two disjoint sets V_1 and V_2 such that each edge joins a node in V_1 to a node in V_2.

The assignment problem:
Given two sets S and T of equal size, pair off each element of S with an element of T at minimum total cost, where there is a cost for each possible pairing, and the total cost is the sum of the costs of the pairings that are used.
Bipartite graphs

A graph \(G = (V, E) \) is **bipartite** if there is a partition of the vertices \(V \) into two disjoint sets \(V_1 \) and \(V_2 \) such that each edge joins a node in \(V_1 \) to a node in \(V_2 \).

The **assignment problem**: Given two sets \(S \) and \(T \) of equal size, pair off each element of \(S \) with an element of \(T \) at minimum total cost, where there is a cost for each possible pairing, and the total cost is the sum of the costs of the pairings that are used.
Bipartite graphs

A graph \(G = (V, E) \) is **bipartite** if there is a partition of the vertices \(V \) into two disjoint sets \(V_1 \) and \(V_2 \) such that each edge joins a node in \(V_1 \) to a node in \(V_2 \).

The **assignment problem**: Given two sets \(S \) and \(T \) of equal size, pair off each element of \(S \) with an element of \(T \) at minimum total cost, where there is a cost for each possible pairing, and the total cost is the sum of the costs of the pairings that are used.
Bipartite graphs

A graph $G = (V, E)$ is **bipartite** if there is a partition of the vertices V into two disjoint sets V_1 and V_2 such that each edge joins a node in V_1 to a node in V_2.

The **assignment problem**: Given two sets S and T of equal size, pair off each element of S with an element of T at minimum total cost, where there is a cost for each possible pairing, and the total cost is the sum of the costs of the pairings that are used.
Bipartite graphs

A graph $G = (V, E)$ is **bipartite** if there is a partition of the vertices V into two disjoint sets V_1 and V_2 such that each edge joins a node in V_1 to a node in V_2.

The **assignment problem**: Given two sets S and T of equal size, pair off each element of S with an element of T at minimum total cost, where there is a cost for each possible pairing, and the total cost is the sum of the costs of the pairings that are used.
Outline

1. Fundamentals
2. Adjacency
3. Paths and Cycles
4. Connected graphs
5. Subgraphs
6. Trees
An edge $e_{ij} = (i, j)$ **meets** or is **incident to** the vertices i and j in V. If such an edge exists, the two vertices are **adjacent**. For example, vertices v_1 and v_4 are adjacent, but vertices v_1 and v_6 are not adjacent.

A graph can be represented by a **vertex-edge incidence matrix** A with entries given by

$$a_{ij} = \begin{cases}
1 & \text{if edge } e_j \text{ is adjacent to vertex } i \\
0 & \text{otherwise}
\end{cases}$$
An edge $e_{ij} = (i, j)$ meets or is incident to the vertices i and j in V. If such an edge exists, the two vertices are adjacent. For example, vertices v_1 and v_4 are adjacent, but vertices v_1 and v_6 are not adjacent.

A graph can be represented by a vertex-edge incidence matrix A with entries given by

$$a_{ij} = \begin{cases} 1 & \text{if edge } e_j \text{ is adjacent to vertex } i \\ 0 & \text{otherwise} \end{cases}$$
Incidence matrix example

Edges are listed in the order \((1, 2), (1, 3), (1, 4), (2, 3), (2, 5), (3, 6), (4, 5), (4, 6), \text{ and } (5, 6)\). Notice that every column of the incidence matrix contains exactly two “ones”.

\[
A = \begin{bmatrix}
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1
\end{bmatrix}
\]
Vertex degree

- The number of edges incident to a node is called the degree of the node. This is equal to the number of “ones” in the corresponding row of the incidence matrix. Every node in the example graph has degree 3.

- A graph with m vertices is called complete if it contains all possible edges, so the degree of every vertex is then $m - 1$. This graph is written K_m.
Vertex degree

- The number of edges incident to a node is called the **degree** of the node. This is equal to the number of “ones” in the corresponding row of the incidence matrix. Every node in the example graph has degree 3.

- A graph with m vertices is called **complete** if it contains all possible edges, so the degree of every vertex is then $m - 1$. This graph is written K_m.
Outline

1. Fundamentals
2. Adjacency
3. Paths and Cycles
4. Connected graphs
5. Subgraphs
6. Trees
Paths

A node sequence v_0, v_1, \ldots, v_k with $k \geq 1$ is a $v_0 - v_k$ walk if $(v_{i-1}, v_i) \in E$ for $i = 1, \ldots, k$. Node v_0 is the origin of the walk and node v_k is the destination. Nodes $\{v_1, \ldots, v_{k-1}\}$ are intermediate nodes. The walk has length k. The walk can also be represented by its edges: e_1, \ldots, e_k, where $e_i = (v_{i-1}, v_i)$. Eg, we have the walk v_1, v_4, v_5, v_6, v_4.

A walk is called a path if there are no node repetitions. Eg, we have the path v_1, v_4, v_5, v_6.

Mitchell
Graph Theory Definitions
A node sequence \(v_0, v_1, \ldots, v_k \) with \(k \geq 1 \) is a \(v_0 - v_k \) walk if \((v_{i-1}, v_i) \in E\) for \(i = 1, \ldots, k \). Node \(v_0 \) is the origin of the walk and node \(v_k \) is the destination. Nodes \(\{v_1, \ldots, v_{k-1}\} \) are intermediate nodes. The walk has length \(k \). The walk can also be represented by its edges: \(e_1, \ldots, e_k \), where \(e_i = (v_{i-1}, v_i) \). Eg, we have the walk \(v_1, v_4, v_5, v_6, v_4 \).

A walk is called a path if there are no node repetitions. Eg, we have the path \(v_1, v_4, v_5, v_6 \).
Cycles

- A $v_0 - v_k$ walk is **closed** if $v_k = v_0$. Eg, we have the closed walk $v_1, v_4, v_5, v_6, v_4, v_1$.
- A closed walk is a **cycle** or **circuit** if $k \geq 3$ and $v_0, v_1, \ldots, v_{k-1}$ is a path. Eg, we have the cycle v_4, v_5, v_6, v_4.
- A graph is **acyclic** if it contains no cycles.
- The **length** of a cycle is the number of edges in the cycle.

Exercise: Show that a graph is bipartite if and only if it contains no cycles of odd length.
A $v_0 - v_k$ walk is **closed** if $v_k = v_0$. Eg, we have the closed walk $v_1, v_4, v_5, v_6, v_4, v_1$.

A closed walk is a **cycle** or **circuit** if $k \geq 3$ and $v_0, v_1, \ldots, v_{k-1}$ is a path. Eg, we have the cycle v_4, v_5, v_6, v_4.

A graph is **acyclic** if it contains no cycles.

The **length** of a cycle is the number of edges in the cycle.

Exercise: Show that a graph is bipartite if and only if it contains no cycles of odd length.
A $v_0 - v_k$ walk is **closed** if $v_k = v_0$. Eg, we have the closed walk $v_1, v_4, v_5, v_6, v_4, v_1$.

A closed walk is a **cycle** or **circuit** if $k \geq 3$ and $v_0, v_1, \ldots, v_{k-1}$ is a path. Eg, we have the cycle v_4, v_5, v_6, v_4.

A graph is **acyclic** if it contains no cycles.

The **length** of a cycle is the number of edges in the cycle.

Exercise: Show that a graph is bipartite if and only if it contains no cycles of odd length.
A $v_0 - v_k$ walk is **closed** if $v_k = v_0$. Eg, we have the closed walk $v_1, v_4, v_5, v_6, v_4, v_1$.

A closed walk is a **cycle** or **circuit** if $k \geq 3$ and $v_0, v_1, \ldots, v_{k-1}$ is a path. Eg, we have the cycle v_4, v_5, v_6, v_4.

A graph is **acyclic** if it contains no cycles.

The **length** of a cycle is the number of edges in the cycle.

Exercise: Show that a graph is bipartite if and only if it contains no cycles of odd length.
Outline

1. Fundamentals
2. Adjacency
3. Paths and Cycles
4. Connected graphs
5. Subgraphs
6. Trees
Connected graphs

- Two vertices u and v in V are connected in $G = (V, E)$ if there exists a (u, v)-path in G.
- Two vertices are in the same component of G if they are connected. Notice that a graph can be partitioned into its components.
- $G = (V, E)$ is connected if it has exactly one component. The graph in the example is connected.
Connected graphs

- Two vertices u and v in V are connected in $G = (V, E)$ if there exists a (u, v)-path in G.
- Two vertices are in the same component of G if they are connected. Notice that a graph can be partitioned into its components.
- $G = (V, E)$ is connected if it has exactly one component. The graph in the example is connected.
Connected graphs

- Two vertices u and v in V are **connected** in $G = (V, E)$ if there exists a (u, v)-path in G.

- Two vertices are in the same **component** of G if they are connected. Notice that a graph can be partitioned into its components.

- $G = (V, E)$ is **connected** if it has exactly one component. The graph in the example is connected.
Outline

1. Fundamentals
2. Adjacency
3. Paths and Cycles
4. Connected graphs
5. Subgraphs
6. Trees
For $U \subseteq V$, let $E(U) := \{(i, j) \in E : i \in U \text{ and } j \in U\}$, so $E(U)$ is the set of edges with both endpoints in U.

- The graph $G' = (V', E')$ is a **subgraph** of G if $V' \subseteq V$ and $E' \subseteq E$.
- G' is the subgraph **induced** by V' if $E' = E(V')$.
- G' is a **spanning** subgraph if $V' = V$.
For $U \subseteq V$, let $E(U) := \{(i, j) \in E : i \in U \text{ and } j \in U\}$, so $E(U)$ is the set of edges with both endpoints in U.

- The graph $G' = (V', E')$ is a subgraph of G if $V' \subseteq V$ and $E' \subseteq E$.
- G' is the subgraph induced by V' if $E' = E(V')$.
- G' is a spanning subgraph if $V' = V$.
For $U \subseteq V$, let $E(U) := \{(i, j) \in E : i \in U \text{ and } j \in U\}$, so $E(U)$ is the set of edges with both endpoints in U.

- The graph $G' = (V', E')$ is a **subgraph** of G if $V' \subseteq V$ and $E' \subseteq E$.
- G' is the subgraph **induced** by V' if $E' = E(V')$.
- G' is a **spanning** subgraph if $V' = V$.

For $U \subseteq V$, let $E(U) := \{(i, j) \in E : i \in U \text{ and } j \in U\}$, so $E(U)$ is the set of edges with both endpoints in U.
Outline

1. Fundamentals
2. Adjacency
3. Paths and Cycles
4. Connected graphs
5. Subgraphs
6. Trees
An acyclic graph is called a **forest**.

- A connected forest is a **tree**.

- A spanning **tree** of $G = (V, E)$ is a spanning subgraph that is a tree.
An acyclic graph is called a **forest**.

A connected forest is a **tree**.

A spanning tree of $G = (V, E)$ is a spanning subgraph that is a tree.
An acyclic graph is called a **forest**.

A connected forest is a **tree**.

A **spanning tree** of $G = (V, E)$ is a spanning subgraph that is a tree.
Tree exercises

Exercise: Let $G = (V, E)$ be a graph on m nodes. Show that the following statements are equivalent:

1. G is a spanning tree.
2. There is a unique path between each pair of nodes.
3. G contains $m - 1$ edges and is connected.
4. G contains $m - 1$ edges and is acyclic.
5. G is acyclic and connected.

Exercise: Show that if $G = (V, E)$ is a spanning tree and $e' \notin E$ then $G' := (V, E \cup e')$ contains exactly one cycle. (This cycle is the **fundamental cycle** for this spanning tree and edge.)

Exercise: Show that if C is the edge set of the fundamental cycle and if the edge $e^* \in C$ then the graph $G^* := (V, E \cup e' \setminus e^*)$ is also a spanning tree.
Tree exercises

Exercise: Let \(G = (V, E) \) be a graph on \(m \) nodes. Show that the following statements are equivalent:

1. \(G \) is a spanning tree.
2. There is a unique path between each pair of nodes.
3. \(G \) contains \(m - 1 \) edges and is connected.
4. \(G \) contains \(m - 1 \) edges and is acyclic.
5. \(G \) is acyclic and connected.

Exercise: Show that if \(G = (V, E) \) is a spanning tree and \(e' \notin E \) then \(G' := (V, E \cup e') \) contains exactly one cycle. (This cycle is the fundamental cycle for this spanning tree and edge.)

Exercise: Show that if \(C \) is the edge set of the fundamental cycle and if the edge \(e^* \in C \) then the graph \(G^* := (V, E \cup e' \setminus e^*) \) is also a spanning tree.
Tree exercises

Exercise: Let $G = (V, E)$ be a graph on m nodes. Show that the following statements are equivalent:

1. G is a spanning tree.
2. There is a unique path between each pair of nodes.
3. G contains $m - 1$ edges and is connected.
4. G contains $m - 1$ edges and is acyclic.
5. G is acyclic and connected.

Exercise: Show that if $G = (V, E)$ is a spanning tree and $e' \not\in E$ then $G' := (V, E \cup e')$ contains exactly one cycle. (This cycle is the fundamental cycle for this spanning tree and edge.)

Exercise: Show that if C is the edge set of the fundamental cycle and if the edge $e^* \in C$ then the graph $G^* := (V, E \cup e' \setminus e^*)$ is also a spanning tree.
Tree exercises

Exercise: Let $G = (V, E)$ be a graph on m nodes. Show that the following statements are equivalent:

1. G is a spanning tree.
2. There is a unique path between each pair of nodes.
3. G contains $m - 1$ edges and is connected.
4. G contains $m - 1$ edges and is acyclic.
5. G is acyclic and connected.

Exercise: Show that if $G = (V, E)$ is a spanning tree and $e' \notin E$ then $G' := (V, E \cup e')$ contains exactly one cycle. (This cycle is the **fundamental cycle** for this spanning tree and edge.)

Exercise: Show that if C is the edge set of the fundamental cycle and if the edge $e^* \in C$ then the graph $G^* := (V, E \cup e' \setminus e^*)$ is also a spanning tree.
Tree exercises

Exercise: Let \(G = (V, E) \) be a graph on \(m \) nodes. Show that the following statements are equivalent:

1. \(G \) is a spanning tree.
2. There is a unique path between each pair of nodes.
3. \(G \) contains \(m - 1 \) edges and is connected.
4. \(G \) contains \(m - 1 \) edges and is acyclic.
5. \(G \) is acyclic and connected.

Exercise: Show that if \(G = (V, E) \) is a spanning tree and \(e' \notin E \) then \(G' := (V, E \cup e') \) contains exactly one cycle. (This cycle is the **fundamental cycle** for this spanning tree and edge.)

Exercise: Show that if \(C \) is the edge set of the fundamental cycle and if the edge \(e^* \in C \) then the graph \(G^* := (V, E \cup e' \setminus e^*) \) is also a spanning tree.
Tree exercises

Exercise: Let $G = (V, E)$ be a graph on m nodes. Show that the following statements are equivalent:

1. G is a spanning tree.
2. There is a unique path between each pair of nodes.
3. G contains $m - 1$ edges and is connected.
4. G contains $m - 1$ edges and is acyclic.
5. G is acyclic and connected.

Exercise: Show that if $G = (V, E)$ is a spanning tree and $e' \not\in E$ then $G' := (V, E \cup e')$ contains exactly one cycle. (This cycle is the fundamental cycle for this spanning tree and edge.)

Exercise: Show that if C is the edge set of the fundamental cycle and if the edge $e^* \in C$ then the graph $G^* := (V, E \cup e' \setminus e^*)$ is also a spanning tree.
Tree exercises

Exercise: Let $G = (V, E)$ be a graph on m nodes. Show that the following statements are equivalent:

1. G is a spanning tree.
2. There is a unique path between each pair of nodes.
3. G contains $m - 1$ edges and is connected.
4. G contains $m - 1$ edges and is acyclic.
5. G is acyclic and connected.

Exercise: Show that if $G = (V, E)$ is a spanning tree and $e' \notin E$ then $G' := (V, E \cup e')$ contains exactly one cycle. (This cycle is the **fundamental cycle** for this spanning tree and edge.)

Exercise: Show that if C is the edge set of the fundamental cycle and if the edge $e^* \in C$ then the graph $G^* := (V, E \cup e' \setminus e^*)$ is also a spanning tree.
Directed graphs

- A **directed graph** or **digraph** $D = (V, A)$ consists of a finite set V of vertices (or nodes) and a set $A = \{e_1, \ldots, e_m\}$ whose elements are ordered subsets of V of size 2 called **arcs**.

- The **node-arc incidence matrix** of a digraph D with m nodes and n arcs is the $m \times n$ matrix A with

$$a_{ij} = \begin{cases}
1 & \text{if } e_j = (k, i) \text{ for some } k \in V \setminus i \\
-1 & \text{if } e_j = (i, k) \text{ for some } k \in V \setminus i \\
0 & \text{otherwise}
\end{cases}$$

Note that the rows of A sum to zero, so they are linearly dependent.

- A **directed walk**, **path**, or **cycle** is a walk, path, or cycle in the underlying undirected graph where the direction of the arcs agrees with the direction of the walk, path or cycle.
Directed graphs

- A **directed graph** or **digraph** $D = (V, A)$ consists of a finite set V of vertices (or nodes) and a set $A = \{e_1, \ldots, e_m\}$ whose elements are *ordered* subsets of V of size 2 called **arcs**.

- The **node-arc incidence matrix** of a digraph D with m nodes and n arcs is the $m \times n$ matrix A with

$$a_{ij} = \begin{cases}
1 & \text{if } e_j = (k, i) \text{ for some } k \in V \setminus i \\
-1 & \text{if } e_j = (i, k) \text{ for some } k \in V \setminus i \\
0 & \text{otherwise}
\end{cases}$$

Note that the rows of A sum to zero, so they are linearly dependent.

- A **directed walk**, **path**, or **cycle** is a walk, path, or cycle in the underlying undirected graph where the direction of the arcs agrees with the direction of the walk, path or cycle.
directed cycle.

\[
\begin{bmatrix}
(r, s) & (r, u) & (s, t) & (t, u) & (u, s) \\
-1 & -1 & 0 & 0 & 0 \\
1 & 0 & -1 & 0 & 1 \\
0 & 0 & 1 & -1 & 0 \\
0 & 1 & 0 & 0 & -1
\end{bmatrix}
\]

rows are linearly dependent: sum is zero.
Directed graphs

A **directed graph** or **digraph** \(D = (V, A) \) consists of a finite set \(V \) of vertices (or nodes) and a set \(A = \{e_1, \ldots, e_m\} \) whose elements are *ordered* subsets of \(V \) of size 2 called **arcs**.

- The **node-arc incidence matrix** of a digraph \(D \) with \(m \) nodes and \(n \) arcs is the \(m \times n \) matrix \(A \) with

\[
a_{ij} = \begin{cases}
1 & \text{if } e_j = (k, i) \text{ for some } k \in V \setminus i \\
-1 & \text{if } e_j = (i, k) \text{ for some } k \in V \setminus i \\
0 & \text{otherwise}
\end{cases}
\]

Note that the rows of \(A \) sum to zero, so they are linearly dependent.

A **directed walk**, **path**, or **cycle** is a walk, path, or cycle in the underlying undirected graph where the direction of the arcs agrees with the direction of the walk, path or cycle.