Graph Theory Definitions

John Mitchell

This document contains definitions of many terms from graph theory.

1 Fundamentals

- A graph $G = (V, E)$ is made up of
 1. A finite nonempty set $V = \{v_1, \ldots, v_n\}$ of nodes or vertices.
 2. A set $E = \{e_1, \ldots, e_m\}$ of edges, where each element e_j is a subset of V of size 2.

- A graph $G = (V, E)$ is bipartite if there is a partition of the vertices V into two disjoint sets V_1 and V_2 such that each edge joins a node in V_1 to a node in V_2.

- The assignment problem: Given two sets S and T of equal size, pair off each element of S with an element of T at minimum total cost, where there is a cost for each possible pairing, and the total cost is the sum of the costs of the pairings that are used. This problem can be modelled using a bipartite graph: take $V = S \cup T$, and take E to be every pair of the form (s, t), where $s \in S$ and $t \in T$. We then want to find a subset of the edges so that every vertex is incident to exactly one edge in this subset.

- Simple graphs: A simple graph is one that contains
 1. no parallel edges, that is, there is at most one edge between any pair of vertices.
 2. no loops, that is, no edges of the form (i, i).

Unless otherwise stated, we will be working with simple graphs.

2 Adjacency

- An edge $e_{ij} = (i, j)$ meets or is incident to the vertices i and j in V. If such an edge exists, the two vertices are adjacent. For example, vertices v_1 and v_4 are adjacent in the graph in figure 1, but vertices v_1 and v_6 are not adjacent.

- A graph can be represented by a vertex-edge incidence matrix A with entries given by

$$
a_{ij} = \begin{cases}
1 & \text{if edge } e_j \text{ is adjacent to vertex } i \\
0 & \text{otherwise}
\end{cases}
$$

For example, the graph in figure 1 has incidence matrix

1
Figure 1: A graph

\[
A = \begin{bmatrix}
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1
\end{bmatrix}
\]

where the edges are listed in the order \((1, 2), (1, 3), (1, 4), (2, 3), (2, 5), (3, 6), (4, 5), (4, 6), \) and \((5, 6)\). Notice that every column of the incidence matrix contains exactly two “ones”.

- The number of edges incident to a node is called the degree of the node. This is equal to the number of “ones” in the corresponding row of the incidence matrix. Every node in the graph in figure 1 has degree 3.

- A graph with \(m\) vertices is called complete if it contains all possible edges, so the degree of every vertex is then \(m - 1\). This graph is written \(K_m\).

3 Paths and Cycles

- A node sequence \(v_0, v_1, \ldots, v_k\) with \(k \geq 1\) is a \(v_0 - v_k\) walk if \((v_{i-1}, v_i) \in E\) for \(i = 1, \ldots, k\). Node \(v_0\) is the origin of the walk and node \(v_k\) is the destination. Nodes \(\{v_1, \ldots, v_{k-1}\}\) are intermediate nodes. The walk has length \(k\). The walk can also be represented by its edges: \(e_1, \ldots, e_k\), where \(e_i = (v_{i-1}, v_i)\). For example, in figure 1, we have the walk \(v_1, v_4, v_5, v_6, v_4\).

- A walk is called a path if there are no node repetitions. For example, in figure 1, we have the path \(v_1, v_4, v_5, v_6\).

- A \(v_0 - v_k\) walk is closed if \(v_k = v_0\). For example, in figure 1, we have the closed walk \(v_1, v_4, v_5, v_6, v_4, v_1\).

- A closed walk is a cycle or circuit if \(k \geq 3\) and \(v_0, v_1, \ldots, v_{k-1}\) is a path. For example, in figure 1, we have the cycle \(v_4, v_5, v_6, v_4\).
• A graph is acyclic if it contains no cycles.

• The length of a cycle is the number of edges in the cycle. **Exercise:** Show that a graph is bipartite if and only if it contains no cycles of odd length.

4 Connected graphs

• Two vertices u and v in V are connected in $G = (V, E)$ if there exists a (u, v)-path in G.

• Two vertices are in the same component of G if they are connected. Notice that a graph can be partitioned into its components.

• $G = (V, E)$ is connected if it has exactly one component. The graph in figure 1 is connected.

5 Subgraphs

For $U \subseteq V$, let $E(U) := \{(i, j) \in E : i \in U \text{ and } j \in U\}$, so $E(U)$ is the set of edges with both endpoints in U.

• The graph $G' = (V', E')$ is a subgraph of G if $V' \subseteq V$ and $E' \subseteq E$.

• G' is the subgraph induced by V' if $E' = E(V')$.

• G' is a spanning subgraph if $V' = V$.

6 Trees

• An acyclic graph is called a forest.

• A connected forest is a tree.

• A spanning tree of $G = (V, E)$ is a spanning subgraph that is a tree.

• **Exercise:** Let $G = (V, E)$ be a graph on m nodes. Show that the following statements are equivalent:

 1. G is a spanning tree.
 2. There is a unique path between each pair of nodes.
 3. G contains $m - 1$ edges and is connected.
 4. G contains $m - 1$ edges and is acyclic.
 5. G is acyclic and connected.
• **Exercise:** Show that if \(G = (V, E) \) is a spanning tree and \(e' \notin E \) then \(G' := (V, E \cup e') \) contains exactly one cycle. (This cycle is the **fundamental cycle** for this spanning tree and edge.)

Exercise: Show that if \(C \) is the edge set of the fundamental cycle and if the edge \(e^* \in C \) then the graph \(G^* := (V, E \cup e' \setminus e^*) \) is also a spanning tree.

7 **Directed graphs**

• A **directed graph** or **digraph** \(D = (V, A) \) consists of a finite set \(V \) of vertices (or nodes) and a set \(A = \{e_1, \ldots, e_m\} \) whose elements are ordered subsets of \(V \) of size 2 called **arcs**.

• The **node-arc incidence matrix** of a digraph \(D \) with \(m \) nodes and \(n \) arcs is the \(m \times n \) matrix \(A \) with

\[
a_{ij} = \begin{cases}
1 & \text{if } e_j = (k, i) \text{ for some } k \in V \setminus i \\
-1 & \text{if } e_j = (i, k) \text{ for some } k \in V \setminus i \\
0 & \text{otherwise}
\end{cases}
\]

Note that the rows of \(A \) sum to zero, so they are linearly dependent.

• A **directed walk**, **path**, or **cycle** is a walk, path, or cycle in the underlying undirected graph where the direction of the arcs agrees with the direction of the walk, path or cycle.