1 The Diet Problem

We have daily requirements for m nutrients: protein, carbohydrates, vitamin A, etc. To make things simple, we’ll assume all these requirements are lower bounds: we have to consume at least a certain amount b_i of nutrient i for $i = 1, \ldots, m$.

We have n different foodstuffs we are prepared to eat. To simplify, we assume the foodstuffs are infinitely divisible, so we can use continuous variables. One unit of foodstuff j costs c_j and provides a_{ij} units of nutrient i.

Minimizing our daily costs subject to meeting our nutritional requirements can then be expressed as a linear program:

$$\begin{align*}
\min_x & \quad \sum_{j=1}^{n} c_j x_j \\
\text{subject to} & \quad \sum_{j=1}^{n} a_{ij} x_j \geq b_i \quad i = 1, \ldots, m \\
& \quad x_j \geq 0 \quad j = 1, \ldots, n
\end{align*}$$

or equivalently

$$\begin{align*}
\min_x & \quad c^T x \\
\text{subject to} & \quad Ax \geq b \\
& \quad x \geq 0.
\end{align*}$$

Now consider a manufacturer of nutrient powders, for $i = 1, \ldots, m$. How should a manufacturer choose prices y_i for the powders so the consumer buys the powders instead of the foodstuffs? (Assume the consumer only cares about cost and is indifferent to taste.) To replace foodstuff j, need

$$\sum_{i=1}^{m} a_{ij} y_i \leq c_j.$$

The total revenue from sale of powders is $\sum_{i=1}^{m} b_i y_i$. Thus, the producer solves the following problem to select prices:

$$\begin{align*}
\max_y & \quad \sum_{i=1}^{m} b_i y_i \\
\text{subject to} & \quad \sum_{i=1}^{m} a_{ij} y_i \leq c_j \quad i = 1, \ldots, n \\
& \quad y_i \geq 0 \quad i = 1, \ldots, m
\end{align*}$$

or equivalently

$$\begin{align*}
\max_y & \quad b^T y \\
\text{subject to} & \quad A^T y \leq c \\
& \quad y \geq 0.
\end{align*}$$
2 Combinations of constraints

We want to get a lower bound on the optimal value of the linear program

\[
\begin{align*}
\min_x & \quad 7x_1 + 5x_2 + 8x_3 \\
\text{subject to} & \quad x_1 + 2x_2 + 5x_3 \geq 6 \\
& \quad 3x_1 + 2x_2 + 4x_3 \geq 13 \\
& \quad 2x_1 + x_2 + 2x_3 \geq 8 \\
& \quad x_1, x_2, x_3 \geq 0.
\end{align*}
\] (1)

Let \(\bar{x} \) be feasible. From the first constraint, we must have, since \(\bar{x} \geq 0 \):

\[
7\bar{x}_1 + 5\bar{x}_2 + 8\bar{x}_3 \geq 1.5\bar{x}_1 + 3\bar{x}_2 + 7.5\bar{x}_3 = 1.5(\bar{x}_1 + 2\bar{x}_2 + 5\bar{x}_3) \geq 9.
\]

Similarly, from the second constraint, we must have:

\[
7\bar{x}_1 + 5\bar{x}_2 + 8\bar{x}_3 \geq 6\bar{x}_1 + 4\bar{x}_2 + 8\bar{x}_3 = 2(3\bar{x}_1 + 2\bar{x}_2 + 4\bar{x}_3) \geq 26.
\]

We can combine the constraints. Take the second and third constraints:

\[
7\bar{x}_1 + 5\bar{x}_2 + 8\bar{x}_3 \geq 7\bar{x}_1 + 4\bar{x}_2 + 8\bar{x}_3 = (3\bar{x}_1 + 2\bar{x}_2 + 4\bar{x}_3) + 2(2\bar{x}_1 + \bar{x}_2 + 2\bar{x}_3) \geq 13 + 16 = 29.
\]

Provided the scale factors are nonnegative, we get a valid lower bound. In particular, with weights \(y \) on the constraints, we need \(A^Ty \leq c \) to be able to conclude that \(b^Ty \) is a valid lower bound. The **dual problem** is to maximize this lower bound:

\[
\begin{align*}
\max_y & \quad b^Ty \\
\text{subject to} & \quad A^Ty \leq c \\
& \quad y \geq 0.
\end{align*}
\]

We can write this out explicitly as:

\[
\begin{align*}
\max_y & \quad 6y_1 + 13y_2 + 8y_3 \\
\text{subject to} & \quad y_1 + 3y_2 + 2y_3 \leq 7 \\
& \quad 2y_1 + 2y_2 + y_3 \leq 5 \\
& \quad 5y_1 + 4y_2 + 2y_3 \leq 8 \\
& \quad y_1, y_2, y_3 \geq 0.
\end{align*}
\] (2)

Note that \(\bar{x} = (3, 0, 1) \) is feasible in (1) with value 29, and \(\bar{y} = (0, 1, 2) \) is feasible in (2), also with value 29. Thus, \(\bar{x} \) and \(\bar{y} \) must solve their respective problems. This is **strong duality**: the optimal values agree (provided they exist).

Note also that at optimality, the **active constraints** in (1) correspond to the **positive components** in (2), and vice versa. This is an illustration of **complementary slackness**.