LP Relaxations of Mixed Integer Programs

John E. Mitchell

Department of Mathematical Sciences
RPI, Troy, NY 12180 USA

February 2015
LP relaxations

We want to solve an integer program by solving a sequence of linear programs. We can relax the integrality constraints to give an LP relaxation. Let

$$S := \{x \in \mathbb{Z}^n : Ax \geq b, x \geq 0\}$$

$$= \mathbb{Z}^n \cap P$$

where

$$P := \{x \in \mathbb{R}^n : Ax \geq b, x \geq 0\}.$$

Since we restrict $x \geq 0$, the polyhedron P has extreme points if it is nonempty.
Convex hull of S

Theorem

The convex hull of S is a polyhedron.

The proof is in Nemhauser and Wolsey.

It is important to note that the extreme rays of $\text{conv}(S)$ are the extreme rays of P.
Equivalent LP formulation

Our integer program of interest is

\[
\min \{ c^T x : x \in S \} \quad (IP).
\]

We relate this to the linear program

\[
\min \{ c^T x : x \in \text{conv}(S) \} \quad (CIP).
\]

We don’t know the constraints of the linear program (CIP) explicitly.
(IP) and (CIP)
(IP) and (CIP)

\[c^T x = z^* \]

\[\text{conv}(S) \]

\[S \]
Value of (IP) and (CIP)

Theorem

For any \(c \in \mathbb{R}^n \), we have:

1. The objective value of (IP) is unbounded below if and only if the objective value of (CIP) is unbounded below.
2. If (CIP) has a bounded optimal value then it has an optimal solution that is an optimal solution to (IP). This optimal solution is an extreme point of \(\text{conv}(S) \).
3. If \(x^0 \) is an optimal solution to (IP) then it is an optimal solution to (CIP).

The proof is in the text. It relies on the fact that the minimizer of a concave function over a convex set is at an extreme point.
Value of (IP) and (CIP)

Theorem

For any \(c \in \mathbb{R}^n \), we have:

1. **The objective value of (IP) is unbounded below if and only if the objective value of (CIP) is unbounded below.**
2. If (CIP) has a bounded optimal value then it has an optimal solution that is an optimal solution to (IP). This optimal solution is an extreme point of \(\text{conv}(S) \).
3. If \(x^0 \) is an optimal solution to (IP) then it is an optimal solution to (CIP).

The proof is in the text. It relies on the fact that the minimizer of a concave function over a convex set is at an extreme point.
Value of (IP) and (CIP)

Theorem

For any $c \in \mathbb{R}^n$, we have:

1. The objective value of (IP) is unbounded below if and only if the objective value of (CIP) is unbounded below.

2. If (CIP) has a bounded optimal value then it has an optimal solution that is an optimal solution to (IP). This optimal solution is an extreme point of $\text{conv}(S)$.

3. If x^0 is an optimal solution to (IP) then it is an optimal solution to (CIP).

The proof is in the text. It relies on the fact that the minimizer of a concave function over a convex set is at an extreme point.
Value of (IP) and (CIP)

Theorem

For any \(c \in \mathbb{R}^n \), we have:

1. The objective value of (IP) is unbounded below if and only if the objective value of (CIP) is unbounded below.
2. If (CIP) has a bounded optimal value then it has an optimal solution that is an optimal solution to (IP). This optimal solution is an extreme point of \(\text{conv}(S) \).
3. If \(x^0 \) is an optimal solution to (IP) then it is an optimal solution to (CIP).

The proof is in the text. It relies on the fact that the minimizer of a concave function over a convex set is at an extreme point.
Possible cases for an integer linear program

Corollary

(IP) is either unbounded or infeasible or has an optimal solution.
Set up LP relaxation

So in principle, could solve (IP) by solving the linear program (CIP). But we don’t know a polyhedral description of conv(S).

Look at the LP relaxation

\[
\min \{ c^T x : Ax \geq b, \ x \geq 0 \} = \min \{ c^T x : x \in P \}. \quad (LP)
\]
Compare (IP) to LP relaxation

We can relate \((LP)\) to \((IP)\) in the following theorem. The proof exploits the fact that \(S \subseteq P\).

Theorem

Let \(z^{LP}\) and \(z^{IP}\) be the optimal values of \((LP)\) and \((IP)\) respectively.

1. If \(P = \emptyset\) then \(S = \emptyset\).
2. If \(z^{LP}\) is finite then either \(S = \emptyset\) or \(z^{IP}\) is finite. If \(S \neq \emptyset\) then \(z^{IP} \geq z^{LP}\).
3. If \(x^{LP}\) is optimal for \((LP)\) and if \(x^{LP} \in \mathbb{Z}^n\) then \(x^{LP}\) is optimal for \((IP)\).
Compare (IP) to LP relaxation

We can relate \((LP)\) to \((IP)\) in the following theorem. The proof exploits the fact that \(S \subseteq P\).

Theorem

Let \(z^{LP}\) and \(z^{IP}\) be the optimal values of \((LP)\) and \((IP)\) respectively.

1. If \(P = \emptyset\) then \(S = \emptyset\).
2. If \(z^{LP}\) is finite then either \(S = \emptyset\) or \(z^{IP}\) is finite. If \(S \neq \emptyset\) then \(z^{IP} \geq z^{LP}\).
3. If \(x^{LP}\) is optimal for \((LP)\) and if \(x^{LP} \in \mathbb{Z}^n\) then \(x^{LP}\) is optimal for \((IP)\).
Compare (IP) to LP relaxation

We can relate \((LP)\) to \((IP)\) in the following theorem. The proof exploits the fact that \(S \subseteq P\).

Theorem

Let \(z^{LP}\) and \(z^{IP}\) be the optimal values of \((LP)\) and \((IP)\) respectively.

1. If \(P = \emptyset\) then \(S = \emptyset\).
2. If \(z^{LP}\) is finite then either \(S = \emptyset\) or \(z^{IP}\) is finite. If \(S \neq \emptyset\) then \(z^{IP} \geq z^{LP}\).
3. If \(x^{LP}\) is optimal for \((LP)\) and if \(x^{LP} \in \mathbb{Z}^n\) then \(x^{LP}\) is optimal for \((IP)\).
Compare (IP) to LP relaxation

We can relate (LP) to (IP) in the following theorem. The proof exploits the fact that $S \subseteq P$.

Theorem

Let z^{LP} and z^{IP} be the optimal values of (LP) and (IP) respectively.

1. If $P = \emptyset$ then $S = \emptyset$.
2. If z^{LP} is finite then either $S = \emptyset$ or z^{IP} is finite. If $S \neq \emptyset$ then $z^{IP} \geq z^{LP}$.
3. If x^{LP} is optimal for (LP) and if $x^{LP} \in \mathbb{Z}^n$ then x^{LP} is optimal for (IP).
Cutting plane algorithm illustration

Solve linear program relaxation

\[\{ x \in \mathbb{R}^n_+ : Ax \geq b \} \]
Cutting plane algorithm illustration

Solve linear program relaxation

\(\{ x \in \mathbb{R}^n_+ : Ax \geq b \} \)

Convex hull of the feasible region: \(\text{conv}(S) \)

Cutting plane: \(a_1^T x = b_1 \)

Solution to LP relaxation
Cutting plane algorithm illustration

Solve linear program relaxation

\[\{ x \in \mathbb{R}^n_+ : Ax \geq b, \ a_i^T x \geq b_i \} \]
Cutting plane algorithm illustration

Solve linear program relaxation

\[\{ x \in \mathbb{R}^n_+ : Ax \geq b, \ a_i^T x \geq b_1 \} \]
Cutting plane algorithm illustration

Solve linear program relaxation

\[\{ y \in \mathbb{R}^n_+ : Ax \geq b, \ a_i^T x \geq b_1, \ a_2^T x \geq b_2 \} \]

Solution to LP relaxation

conv(S)
Cutting plane algorithm illustration

Solve linear program relaxation

\[\{ x \in \mathbb{R}_+^n : Ax \geq b, \ a_1^T x \geq b_1, \ a_2^T x \geq b_2 \} \]

Solution to LP relaxation

Solution is integral, so optimal to IP
A cutting plane approach

An integer program has **many LP relaxations**.

The aim of a cutting plane approach is to add linear constraints to the original LP relaxation in order to **tighten up** the LP relaxation.

These linear constraints are satisfied by every point in S but they might not be satisfied by every point in P.

Adding these constraints gives an **improved LP relaxation** of the integer program.

We would like to improve the relaxation so that it resembles $\text{conv}(S)$ in some sense, at least in the neighborhood of an optimal solution to (IP).
Polyhedral description of conv(S)

We would like to get a polyhedral description of conv(S).
We’d like as compact a description as possible.
We first set up some notation.

Given a matrix $A \in \mathbb{R}^{m \times n}$ and a vector $b \in \mathbb{R}^m$, we construct the polyhedron

$$Q := \{ x \in \mathbb{R}^n : Ax \geq b \}.$$

Note: We have changed notation from Section 1. In particular, any nonnegativity constraints are included in the system $Ax \geq b$.
Example 0

Full-dimensional example

\[Q := \left\{ x \in \mathbb{R}^2 : \begin{array}{c}
x_1 + x_2 \leq 6 \\
x_2 \leq 6 \\
x_1 - x_2 \leq 2 \\
2x_1 + x_2 \leq 10 \\
x_1 \geq 0 \\
x_2 \geq 0 \end{array} \right\} \]
Example 1

First example with implicit equality in \mathbb{R}^2

\[
Q := \left\{ x \in \mathbb{R}^2 : \begin{array}{ccc}
x_1 + x_2 & \leq & 3 \\
x_1 + x_2 & \geq & 3 \\
3x_1 + x_2 & \geq & 3 \\
x_1 & \geq & 0 \\
x_2 & \geq & 0
\end{array} \right\}
\]
Example 2

Second example with implicit equality in \mathbb{R}^2

$$Q := \left\{ x \in \mathbb{R}^2 : \begin{array}{ll} 2x_1 + x_2 & \leq 4 \\ x_1 + x_2 & \geq 4 \\ x_1 & \geq 0 \\ x_2 & \geq 0 \end{array} \right\}$$
Implicit equality constraints

We construct three sets of indices:

\[M := \{1, \ldots, m\} \]
\[M^= := \{i \in M : A_i^T x = b_i \, \forall x \in Q\} \]
\[M^\geq := M \setminus M^= \]
\[= \{i \in M : A_i^T x > b_i \text{ for some } x \in Q\}. \]

We also use the notation \(A^=, A^\geq, b^= \) and \(b^\geq \) in an analogous way.
Example 0

Full-dimensional example

\[
Q := \left\{ x \in \mathbb{R}^2 : \begin{array}{ccc}
 x_1 + x_2 & \leq & 6 \\
 x_2 & \leq & 6 \\
 x_1 - x_2 & \leq & 2 \\
 2x_1 + x_2 & \leq & 10 \\
 x_1 & \geq & 0 \\
 x_2 & \geq & 0 \\
\end{array} \right\}
\]*
Example 1

First example with implicit equality in \mathbb{R}^2

$$Q := \left\{ x \in \mathbb{R}^2 : \begin{array}{ll} x_1 + x_2 & \leq 3 \quad M= \\ x_1 + x_2 & \geq 3 \quad M= \\ 3x_1 + x_2 & \geq 3 \quad M\geq \\ x_1 & \geq 0 \quad M\geq \\ x_2 & \geq 0 \quad M\geq \end{array} \right\}$$
Example 2

Second example with implicit equality in \mathbb{R}^2

$$Q := \left\{ x \in \mathbb{R}^2 : \begin{array}{c} 2x_1 + x_2 \leq 4 \\ x_1 + x_2 \geq 4 \\ x_1 \geq 0 \\ x_2 \geq 0 \end{array} \right\}$$
Valid inequalities

Definition

The inequality $\pi^T x \geq \pi_0$ is a valid inequality for Q if it is satisfied by all points in Q. We also represent the inequality using the pair (π, π_0).

Definition

Let $\pi^T x \geq \pi_0$ be a valid inequality for Q. Let $H = \{x \in \mathbb{R}^n : \pi^T x = \pi_0\}$ so $F := Q \cap H$ is a face of Q. Then (π, π_0) represents F. If $F \neq \emptyset$ then (π, π_0) supports Q.

We extend the notation $\mathbf{M}^=$, \mathbf{M}^\geq to the face F using the notation $\mathbf{M}_F^=$, \mathbf{M}_F^\geq.
Valid inequalities

Definition

The inequality $\pi^T x \geq \pi_0$ is a valid inequality for Q if it is satisfied by all points in Q. We also represent the inequality using the pair (π, π_0).

Definition

Let $\pi^T x \geq \pi_0$ be a valid inequality for Q. Let $H = \{x \in \mathbb{R}^n : \pi^T x = \pi_0\}$ so $F := Q \cap H$ is a face of Q. Then (π, π_0) represents F. If $F \neq \emptyset$ then (π, π_0) supports Q.

We extend the notation $M^=, M^\geq$ to the face F using the notation $M^=_F, M^\geq_F$.
Implicit equalities for faces

Proposition

If F is a nonempty face of Q then F is a polyhedron and

$$F = \left\{ x \in \mathbb{R}^n : a^T_i x = b_i \text{ } \forall i \in M_F^=, \ a^T_i x \geq b_i \text{ } \forall i \in M_F^\geq \right\},$$

where $M_F^= \supseteq M^= \text{ and } M_F^\geq \subseteq M^\geq$.
Facets

Proposition

If F is a facet of Q then there exists some inequality $a_k^T x \geq b_k$ with $k \in M_\geq$ that represents F.

Proof.

Now $\dim(F) = \dim(P)-1$, so $\text{rank}(A_F, b_F) = \text{rank}(A^=, b^=) + 1$. Therefore, we only need one inequality in M_\geq that is in $M_F^=$, and this inequality represents the facet.
Facets

Proposition

If F is a facet of Q then there exists some inequality $a_k^T x \geq b_k$ with $k \in M^\geq$ that represents F.

Proof.

Now $\dim(F) = \dim(P) - 1$, so $\rank(A_F^-, b_F^-) = \rank(A^-, b^-) + 1$. Therefore, we only need one inequality in M^\geq that is in M_F^-, and this inequality represents the facet.
One inequality per facet

Proposition

For each facet F of Q, one of the inequalities representing F is necessary in the description of Q.

Proposition

Every inequality $a_i^T x \geq b_i$ for $i \in M^\geq$ that represents a face of Q of dimension less than $\dim(Q) - 1$ is irrelevant to the description of Q.

Thus, later we will emphasize finding **facets of the convex hull** of S.
One inequality per facet

Proposition

For each facet F of Q, one of the inequalities representing F is necessary in the description of Q.

Proposition

Every inequality $a_i^T x \geq b_i$ for $i \in M \geq$ that represents a face of Q of dimension less than $\dim(Q) - 1$ is irrelevant to the description of Q.

Thus, later we will emphasize finding **facets of the convex hull** of S.
Minimal representation of polyhedron

With these propositions, we can now state two theorems showing how a polyhedron can be minimally represented using linear equalities and inequalities.

Theorem (full dimensional case)

A full dimensional polyhedron Q has a unique (to within scalar multiplication) minimal representation by a finite set of linear inequalities. In particular, for each facet F_i of Q with $i = 1, \ldots, t$, there is an inequality $a_i^T x \geq b_i$ (unique to within scalar multiplication) representing F_i and

$$Q = \{ x \in \mathbb{R}^n : a_i^T x \geq b_i, \ i = 1, \ldots, t \}.$$
Example 0

Full-dimensional example

\[Q := \{ x \in \mathbb{R}^2 : \begin{align*}
 x_1 + x_2 & \leq 6 & M \geq \\
 x_2 & \leq 6 & M \geq \\
 x_1 - x_2 & \leq 2 & M \geq \\
 2x_1 + x_2 & \leq 10 & M \geq \\
 x_1 & \geq 0 & M \geq \\
 x_2 & \geq 0 & M \geq
\} \]
Example 0

Full-dimensional example

\[Q := \begin{cases} x \in \mathbb{R}^2 : & x_1 + x_2 \leq 6 \\ & x_2 \leq 6 \\ & x_1 - x_2 \leq 2 \\ & 2x_1 + x_2 \leq 10 \\ & x_1 \geq 0 \\ & x_2 \geq 0 \end{cases} \]
Describing Polyhedra by Facets

Minimal representation of polyhedron

Theorem (not full dimensional)

If \(\dim(Q) = n - k \) with \(k > 0 \) then let \(t \) be the number of facets \(F_i \) of \(Q \), and we have

\[
Q = \{ x \in \mathbb{R}^n : a_i^T x = b_i \text{ for } i = 1, \ldots, k, \quad a_i^T x \geq b_i \text{ for } i = k + 1, \ldots, k + t \}.
\]

The set \(\{(a_i, b_i) : i = 1, \ldots, k\} \) is a maximal set of linearly independent rows of \((A^=, b^=)\).

For \(i = k + 1, \ldots, k + t \), \((a_i, b_i)\) is any inequality from the equivalence class of inequalities representing the facet \(F_i \) of \(Q \).
Example 1

First example with implicit equality in \mathbb{R}^2

$$Q := \left\{ x \in \mathbb{R}^2 : \begin{array}{c}
x_1 + x_2 \leq 3 \quad M= \\
x_1 + x_2 \geq 3 \quad M= \\
3x_1 + x_2 \geq 3 \quad M\geq \\
x_1 \geq 0 \quad M\geq \\
x_2 \geq 0 \quad M\geq
\end{array} \right\}$$
Example 1

First example with implicit equality in \mathbb{R}^2

\[
Q := \begin{cases}
 x \in \mathbb{R}^2 : \\
 x_1 + x_2 = 3 & M= \\
 x_1 + x_2 \geq 3 & M= \\
 3x_1 + x_2 \geq 3 & M\geq \\
 x_1 \geq 0 & M\geq \\
 x_2 \geq 0 & M\geq
\end{cases}
\]
Example 1

First example with implicit equality in \mathbb{R}^2

$$Q := \left\{ x \in \mathbb{R}^2 : \begin{array}{c}
x_1 + x_2 \leq 3 \\
x_1 + x_2 = 3 \\
3x_1 + x_2 \geq 3 \\
x_1 \geq 0 \\
x_2 \geq 0
d\end{array} \right\}$$
Example 1

First example with implicit equality in \mathbb{R}^2

$$Q := \left\{ x \in \mathbb{R}^2 : \begin{array}{c} x_1 + x_2 \leq 3 \hspace{1cm} M = \\ x_1 + x_2 = 3 \hspace{1cm} M = \\ 3x_1 + x_2 \geq 3 \hspace{1cm} M \geq \\ x_1 \geq 0 \hspace{1cm} M \geq \\ x_2 \geq 0 \hspace{1cm} M \geq \end{array} \right\}$$
Example 2

Second example with implicit equality in \mathbb{R}^2

$$Q := \left\{ x \in \mathbb{R}^2 : \begin{array}{l}
2x_1 + x_2 \leq 4 \\
x_1 + x_2 \geq 4 \\
x_1 \geq 0 \\
x_2 \geq 0
\end{array} \right\}$$
Example 2

Second example with implicit equality in \mathbb{R}^2

$$Q := \left\{ x \in \mathbb{R}^2 : \begin{array}{c} 2x_1 + x_2 \leq 4 \quad M= \quad x_1 + x_2 = 4 \quad M= \\ x_1 = 0 \quad M= \\ x_2 \geq 0 \quad M\geq \end{array} \right\}$$
Example 2

Second example with implicit equality in \mathbb{R}^2

$$Q := \left\{ x \in \mathbb{R}^2 : \begin{array}{l}
2x_1 + x_2 = 4 \\
x_1 + x_2 \geq 4 \\
x_1 = 0 \\
x_2 \geq 0
\end{array} \right\}$$
Example 2

Second example with implicit equality in \mathbb{R}^2

$$Q := \left\{ x \in \mathbb{R}^2 : \begin{array}{c} 2x_1 + x_2 = 4 \\ x_1 + x_2 = 4 \\ x_1 \geq 0 \\ x_2 \geq 0 \end{array} \right\}$$
Summary

The aim in a cutting plane approach is to try to develop a **minimal description of the polyhedron** \(\text{conv}(S) \), at least in the neighborhood of an optimal point to \((IP)\).

This pair of theorems tells us that it is enough to determine all the **facets of \(\text{conv}(S) \)**, as well as a description of the **affine hull of \(\text{conv}(S) \)**.