Math Models of OR: Complementary Slackness

John E. Mitchell
http://www.rpi.edu/~mitchj

Department of Mathematical Sciences
RPI, Troy, NY 12180 USA

October 2018
Outline

1. A standard dual pair example
2. Another example
3. The general case
4. The simplex algorithm
Consider the standard dual pair example:

\[
\begin{align*}
\min_x & \quad 2x_1 + 5x_2 + 4x_3 \\
\text{s.t.} & \quad x_1 + x_2 - 3x_3 \geq 3 \\
& \quad -x_1 + x_2 + x_3 \geq 1 \\
& \quad x_1, x_2, x_3 \geq 0
\end{align*}
\]

\[
\begin{align*}
\max_y & \quad 3y_1 + y_2 \\
\text{s.t.} & \quad y_1 - y_2 \leq 2 \\
& \quad y_1 + y_2 \leq 5 \\
& \quad -3y_1 + y_2 \leq 4 \\
& \quad y_1, y_2 \geq 0
\end{align*}
\]
Minimization problem

Initial tableau:

<table>
<thead>
<tr>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(x_3)</th>
<th>(s_1)</th>
<th>(s_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>5</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>(-3)</td>
<td>(-1)</td>
</tr>
<tr>
<td>1</td>
<td>(-1)</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Final tableau:

<table>
<thead>
<tr>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(x_3)</th>
<th>(s_1)</th>
<th>(s_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-12)</td>
<td>0</td>
<td>0</td>
<td>13</td>
<td>(\frac{7}{2})</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>(-1)</td>
<td>(-\frac{1}{2})</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>(-2)</td>
<td>(-\frac{1}{2})</td>
</tr>
</tbody>
</table>
Maximization problem

Make it into a minimization problem so we can set up a simplex tableau, by changing the sign of the objective:

<table>
<thead>
<tr>
<th></th>
<th>y_1</th>
<th>y_2</th>
<th>w_1</th>
<th>w_2</th>
<th>w_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>-3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>y_1</th>
<th>y_2</th>
<th>w_1</th>
<th>w_2</th>
<th>w_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>-1/2</td>
<td>1/2</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>1/2</td>
<td>1/2</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Relationship between optimal variables and slacks

<table>
<thead>
<tr>
<th>index</th>
<th>primal variable</th>
<th>dual slack</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(x_1^* = 1)</td>
<td>(w_1^* = 0)</td>
</tr>
<tr>
<td>2</td>
<td>(x_2^* = 2)</td>
<td>(w_2^* = 0)</td>
</tr>
<tr>
<td>3</td>
<td>(x_3^* = 0)</td>
<td>(w_3^* = 13)</td>
</tr>
</tbody>
</table>

For each component \(j\), either \(x_j^* = 0\) or \(w_j^* = 0\).

<table>
<thead>
<tr>
<th>index</th>
<th>dual variable</th>
<th>primal slack</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(y_1^* = \frac{7}{2})</td>
<td>(s_1^* = 0)</td>
</tr>
<tr>
<td>2</td>
<td>(y_2^* = \frac{3}{2})</td>
<td>(s_2^* = 0)</td>
</tr>
</tbody>
</table>

For each component \(i = 1, 2\), either \(y_i^* = 0\) or \(s_i^* = 0\).

This relationship always holds and is known as **complementary slackness**.

Note that the “or” is not an “exclusive or”: it is possible for \(x_j^* = w_j^* = 0\) for some component \(j\), and/or for \(y_i = s_i = 0\) for some component \(i\).
Outline

1. A standard dual pair example
2. Another example
3. The general case
4. The simplex algorithm
A problem with multiple optimal solutions

\[
\begin{align*}
\text{min}_{x} & \quad x_1 + x_2 + x_3 \\
\text{subject to} & \quad 2x_1 + 3x_2 + x_3 \geq 4 \\
& \quad 2x_1 + x_2 + 3x_3 \geq 4 \\
& \quad x_1 + x_2 + x_3 \geq 2 \\
& \quad x_j \geq 0, \quad j = 1, \ldots, 3
\end{align*}
\]
Dual problem

\[
\begin{align*}
\min_{y,s} & \quad 4y_1 + 4y_2 + 2y_3 \\
\text{subject to} & \quad 2y_1 + 2y_2 + y_3 \leq 1 \\
& \quad 3y_1 + y_2 + y_3 \leq 1 \\
& \quad y_1 + 3y_2 + y_3 \leq 1 \\
& \quad y_i \geq 0, \quad i = 1, \ldots, 3
\end{align*}
\]
One pair of optimal solutions

Primal optimal solutions include \(x^* = (2, 0, 0) \), with slacks \(s^* = (0, 0, 0) \).
Dual optimal solutions include \(y^* = (0, 0, 1) \), with slacks \(w^* = (0, 0, 0) \).

These points satisfy complementary slackness:

<table>
<thead>
<tr>
<th>index</th>
<th>primal variable</th>
<th>dual slack</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(x_1^* = 2)</td>
<td>(w_1^* = 0)</td>
</tr>
<tr>
<td>2</td>
<td>(x_2^* = 0)</td>
<td>(w_2^* = 0)</td>
</tr>
<tr>
<td>3</td>
<td>(x_3^* = 0)</td>
<td>(w_3^* = 0)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>index</th>
<th>dual variable</th>
<th>primal slack</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(y_1^* = 0)</td>
<td>(s_1^* = 0)</td>
</tr>
<tr>
<td>2</td>
<td>(y_2^* = 0)</td>
<td>(s_2^* = 0)</td>
</tr>
<tr>
<td>3</td>
<td>(y_3^* = 1)</td>
<td>(s_3^* = 0)</td>
</tr>
</tbody>
</table>
Another pair of optimal solutions

The primal solution \(x^* = (1, 0.5, 0.5) \) with slacks \(s^* = (0, 0, 0) \), and
dual solution \(y^* = (0.125, 0.125, 0.5) \) with slacks \(w^* = (0, 0, 0) \).

Again, this pair satisfies complementary slackness.

This pair satisfies *strict complementarity*: for each index, exactly one of
\(x_j^* \) and \(w_j^* \) is positive, and exactly one of \(y_i^* \) and \(s_i^* \) is positive:

<table>
<thead>
<tr>
<th>index</th>
<th>primal variable</th>
<th>dual slack</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(x_1^* = 1)</td>
<td>(w_1^* = 0)</td>
</tr>
<tr>
<td>2</td>
<td>(x_2^* = 0.5)</td>
<td>(w_2^* = 0)</td>
</tr>
<tr>
<td>3</td>
<td>(x_3^* = 0.5)</td>
<td>(w_3^* = 0)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>index</th>
<th>dual variable</th>
<th>primal slack</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(y_1^* = 0.125)</td>
<td>(s_1^* = 0)</td>
</tr>
<tr>
<td>2</td>
<td>(y_2^* = 0.125)</td>
<td>(s_2^* = 0)</td>
</tr>
<tr>
<td>3</td>
<td>(y_3^* = 0.5)</td>
<td>(s_3^* = 0)</td>
</tr>
</tbody>
</table>
Strict complementarity

If a linear optimization problem has an optimal solution then it has an optimal solution that satisfies strict complementarity.

Every primal optimal solution satisfies complementary slackness with every dual optimal solution.
Outline

1. A standard dual pair example
2. Another example
3. The general case
4. The simplex algorithm
The general case

We work with the standard form primal-dual pair of linear optimization problems:

$$\begin{align*}
\min_{x \in \mathbb{R}^n} & \quad c^T x \\
\text{subject to} & \quad Ax \geq b \\
& \quad x \geq 0
\end{align*} \quad \text{(P)}$$

$$\begin{align*}
\max_{y \in \mathbb{R}^m} & \quad b^T y \\
\text{subject to} & \quad A^T y \leq c \\
& \quad y \geq 0
\end{align*} \quad \text{(D)}$$

Complementary slackness

Theorem

A pair of primal and dual feasible solutions are optimal to their respective problems in a primal-dual pair of LPs if and only if

whenever these variables make a slack variable in one problem strictly positive, the value of the associated nonnegative variable in the other is zero.

\{ complementary slackness \}
Proof of theorem

We can define the vector of primal slacks \(s = Ax - b \) for any \(x \in \mathbb{R}^n \) and the vector of dual slacks \(w = c - A^T y \in \mathbb{R}^n \) for any \(y \in \mathbb{R}^m \). Note that the duality gap is

\[
 c^T x - b^T y = c^T x - (Ax - s)^T y = s^T y + c^T x - x^T A^T y \\
 = s^T y + c^T x - (A^T y)^T x = s^T y + (c - A^T y)^T x \\
 = s^T y + w^T x \\
 = \sum_{i=1}^{m} s_i y_i + \sum_{j=1}^{n} w_j x_j
\]

for any \(y \in \mathbb{R}^m \) and \(x \in \mathbb{R}^n \).
Proof (continued)

Thus we have the duality gap:

\[c^T x - b^T y = s^T y + w^T x = \sum_{i=1}^{m} s_i y_i + \sum_{j=1}^{n} w_j x_j. \]

Note that if \(x \) and \(y \) are feasible in their respective problems then \(x \geq 0, y \geq 0, w \geq 0, \) and \(s \geq 0, \) so \(w^T x \geq 0 \) and \(s^T y \geq 0. \)

If the points are optimal then \(c^T x - b^T y = 0 \) so \(\sum_{i=1}^{m} y_i s_i = 0 \) and \(\sum_{j=1}^{n} w_j x_j = 0, \) so each component \(w_j x_j = 0 \) and each component \(s_i y_i = 0, \) since they must all be nonnegative.

So either \(w_j = 0 \) or \(x_j = 0 \) for each component \(j = 1, \ldots, n, \) and either \(s_i = 0 \) or \(y_i = 0 \) for each component \(i = 1, \ldots, m. \)

This is complementary slackness.
Proof (part 3)

We need to prove the converse. We again exploit the equality

\[c^T x - b^T y = s^T y + w^T x = \sum_{i=1}^{m} s_i y_i + \sum_{j=1}^{n} w_j x_j. \]

If complementary slackness holds then either \(x_j = 0 \) or \(w_j = 0 \) for each component \(j = 1, \ldots, n \), so \(w^T x = 0 \).

Further, either \(y_i = 0 \) or \(s_i = 0 \) for each component \(i = 1, \ldots, m \), so \(y^T s = 0 \).

It follows that \(c^T x = b^T y \) so the points are optimal.
Outline

1. A standard dual pair example
2. Another example
3. The general case
4. The simplex algorithm
Optimality and complementary slackness

The simplex algorithm is stated in terms of the linear optimization problem

\[
\min_{x \in \mathbb{R}^n} \quad c^T x \\
\text{subject to} \quad Ax = b \quad (\hat{P}) \quad \text{with dual} \quad \max_{y \in \mathbb{R}^m} \quad b^T y \\
\quad x \geq 0 \\
\]

A pair of points \(\hat{x} \in \mathbb{R}^n \) and \(\hat{y} \in \mathbb{R}^m \) is \textbf{optimal} if and only if it satisfies the following three conditions:

- **Primal feasibility**: \(A\hat{x} = b, \hat{x} \geq 0 \).
- **Dual feasibility**: \(A^T\hat{y} \leq c \).
- **Complementary slackness**: Let \(\hat{w} = c - A^T\hat{y} \). Then \(\hat{x}_j\hat{w}_j = 0 \) for \(j = 1, \ldots, n \).
The simplex algorithm is stated in terms of the linear optimization problem

\[
\min_{x \in \mathbb{R}^n} \quad c^T x \\
\text{subject to} \quad Ax = b \quad (\hat{P}) \quad \text{with dual} \quad \max_{y \in \mathbb{R}^m} \quad b^T y \\
\quad \quad \quad \quad x \geq 0
\]

A pair of points \(\hat{x} \in \mathbb{R}^n \) and \(\hat{y} \in \mathbb{R}^m \) is optimal if and only if it satisfies the following three conditions:

- **Primal feasibility**: \(A\hat{x} = b, \hat{x} \geq 0 \).
- **Dual feasibility**: \(A^T\hat{y} \leq c \).
- **Complementary slackness**: Let \(\hat{w} = c - A^T\hat{y} \). Then \(\hat{x}_j \hat{w}_j = 0 \) for \(j = 1, \ldots, n \).
Optimality and complementary slackness

The simplex algorithm is stated in terms of the linear optimization problem

$$\begin{align*}
\min_{x \in \mathbb{IR}^n} & \quad c^T x & \quad \max_{y \in \mathbb{IR}^m} & \quad b^T y \\
\text{subject to} & \quad Ax = b & \text{with dual subject to} & \quad A^T y \leq c \\
& \quad x \geq 0 & & \\
\end{align*}$$

A pair of points $\hat{x} \in \mathbb{IR}^n$ and $\hat{y} \in \mathbb{IR}^m$ is optimal if and only if it satisfies the following three conditions:

- **Primal feasibility**: $A\hat{x} = b$, $\hat{x} \geq 0$.
- **Dual feasibility**: $A^T\hat{y} \leq c$.
- **Complementary slackness**: Let $\hat{w} = c - A^T\hat{y}$. Then $\hat{x}_j\hat{w}_j = 0$ for $j = 1, \ldots, n$.
Simplex and complementary slackness

Once Phase I is complete, the simplex algorithm always *maintains primal feasibility*.

Further, at each iteration, we can construct a dual solution that *satisfies complementary slackness*:

\[\text{require the dual slack } \hat{w}_j = 0 \text{ for each basic variable } \hat{x}_j. \]

This requires solving a system of \(m \) equations in the \(m \) components of \(\hat{y} \), one equation for each basic variable.

Thus, we’re only lacking dual feasibility. Now, the reduced costs are equal to the dual slacks, when \(\hat{y} \) is constructed in this way. So, iterating to get the dual slacks nonnegative is equivalent to *working towards dual feasibility*.