01/30/06 Continuous random variables

Office hours: W 2-3 PM
F 4-5 PM

Random variable X with continuous state space S
(Generally $S \subseteq \mathbb{R}^d$ or \mathbb{C}^d)

Specify a random variable X by specifying:

1) state space $\Omega \subseteq S$

2) collection of "measurable" subsets of S
 - this is called σ-algebra B

3) a probability measure
 \[P_X(B) = \text{Prob}(X \in B) \]
 for $B \in B$
For $S \subseteq \mathbb{R}^n$, \mathcal{C} then usually

$B = \text{Borel } \sigma\text{-algebra}$

- smallest $\sigma\text{-algebra}$ that contains all open and closed cubes

- a $\sigma\text{-algebra } B$ is a collection of sets S such that:
 1) $\emptyset \subseteq B$
 2) $B \subseteq B \Rightarrow \forall S \subseteq B \in B$
 3) $\left\{ \bigcup_{j=1}^{\infty} \mathcal{B}_j \right\} \subseteq B$

Also useful = Lebesgue-measurable $\sigma\text{-algebra } B$

- smallest complete $\sigma\text{-algebra}$ containing all open and closed cubes

- if $B \subseteq B$ and $\mathcal{P}(B) = 0$ then

 $A \subseteq B \Rightarrow \mathcal{P}(A) = 0$ and $A \in B$
Suppose P_X is absolutely continuous with Lebesgue measure. Geometrically, small sets have small probability.

$$\Rightarrow \text{there exists a probability density function (PDF)}$$

$$p(x) \text{ s.t.,}$$

$$P(B) = \text{Prob}(X \in B) = \int_B p(x) \, dx$$

for $B \in \mathcal{B}$

\[\begin{array}{c}
 \text{Formally,} \\
 \text{Prob}(\mid X - x \mid \leq \Delta x) \\
 = \int_{x-\Delta x}^{x+\Delta x} p(x') \, dx' \\
 \approx p(x) \Delta x + o(\Delta x) \text{ for small } \Delta x.
\end{array} \]

More generally (even in multi-d) $\text{Prob}(X \in D_x) \approx p(x) \text{ Vol}(D_x)$ for small sets D_x containing x.\]
How can we describe continuous r.v.s more practically?

Consider first \(S = \mathbb{R} \)

Define cumulative distribution function (CDF) for r.v. \(X \)

\[
F_X(x) = \text{Prob}(X \leq x) \quad \text{for } x \in \mathbb{R}
\]

This gives complete information about \(X \):

\[
\text{Prob}(X \in [a, b]) = \text{Prob}(a \leq X < b)
\]

\[
= P_X([a, b])
\]

\[
= \text{Prob}(X \in \bigcap_{k=1}^{\infty} \bigcup_{j=1}^{\infty} (a-2^{-j}, b-2^{-k}])
\]

Why do this?

\[
= \lim_{j \to \infty} \lim_{k \to \infty} F_X(b-2^{-k}) - F_X(a-2^{-j})
\]
\[
\text{Prob}(X \in (c, d]) = \text{Prob}(c < X \leq d) \\
\quad = \text{Prob}(X \leq d \text{ and (not } X \leq c)) \\
\quad = \text{Prob}(X \leq d) - \text{Prob}(X \leq c) \\
\quad = F_X(d) - F_X(c)
\]

What does \(CDF \) look like, for smoothly distributed \(x \):

If \(a \in \mathbb{R} \) is a sticky/absorption
So CDFs are practical but mathematically general in 1-dim.
- not so neat in multi-D
- not so intuitive due to nonlocality
HW 1 due date postponed to 02/09, 2 PM (Thursday)

Examples

1) Uniform distribution

\[X \sim U [a, b] \]

PDF: \[p(x) = \frac{1}{b-a} \quad \text{for} \quad a \leq x \leq b \]

= 0 \quad\text{otherwise}
Generally \[F_X(x) = \int_{-\infty}^{x} \lambda e^{-\lambda x} \, dx \]

2) Exponentially distributed r.v. \(X \)

PDF: \[p(x) = \lambda e^{-\lambda x} \quad \text{for} \quad x \geq 0 \]
\[= 0 \quad \text{for} \quad x < 0 \]

where \(\lambda > 0 \) is a parameter \((<X> = \frac{1}{\lambda})\)
3) Gaussian distribution (normal)

\[X \sim N(\mu, \sigma^2) \]

mean \(\mu \)

standard deviation \(\sigma^2 \)

PDF: \[p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \]

\[\langle X \rangle = \mu \]

\[\langle (X - \mu)^2 \rangle = \sigma^2 > 0 \]

\[F_X(x) = \text{erf} \left(\frac{x - \mu}{\sigma} \right) \]
How to calculate with continuous r.v.'s and probability density,

remark if P_Σ is not absolutely continuous but has a nice set of points $\{a_j\}$ which have nonzero prob, $\text{Prob}(\Sigma = a_j) = p_j$, so that P_Σ has a discrete and continuous component, then in applications, one can still use PDF's with δ-facs:

$$p(x) = p_{\text{cont}}(x) + \sum p_j \delta(x-a_j)$$
How do we calculate averages involving continuous r.v.'s?

\[\langle f(X) \rangle \]

If \(X \) has a PDF \(p(x) \)

\[\langle f(X) \rangle = \int_{S} f(x) p(x) \, dx \]

(just generalizes sums from discrete case)

\[\sum_{x} \]

In particular

\[\langle \sum_{x} \rangle = \int_{S} x \cdot p(x) \, dx \]

etc.
More generally (w/o assume PDF) then
\[\langle f(\mathbf{X}) \rangle = \int f(x) \, dp_{\mathbf{X}}(x) \]

Lebesgue integral

\[(\text{If } \mathbf{X} \text{ is a.c., then } \) \]
\[dp_{\mathbf{X}}(x) = p(x) \, dx \]

One can generalize from discrete state space:

i) multi-dimensional state spaces
 - CDPS awkward
 - POPs natural

ii) relations between r.v.s
 - then joint PDFs
 - independence: \(\Phi \)

\(\Phi \) Let \(\mathbf{X} \) be a collection of continuous r.v.s with PDF \(p(x) \). (joint PDF)
If X_1, X_2 independent

$$p(x) = p_1(x_1) p_2(x_2)$$

PDF for p_1 PDF for p_2 for X_1, X_2

(iii) Conditional prob/expr

- same idea but more technical