Math 4820
D. Schwendeman
Problem Set 7
Due:
Monday, 4/12/10

1. Consider the linear BVP

\[u'' + \frac{1}{t} u' = Q(t), \quad 0 < t \leq 1, \quad u'(0) = 0, \quad u'(1) + \alpha u(1) = \beta \]

(a) Show that \(\lim_{t \to 0} \frac{1}{t} u' = u'' \). (Hint: use L'Hôpital's rule.)

(b) Write a code to solve the BVP numerically using the finite-difference scheme

\[
\frac{1}{h^2} \delta_t^2 v_j + \frac{1}{2h} \delta_{tt} v_j = Q(t_j), \quad \frac{1}{2h} \delta_{tt} v_0 = 0, \quad \frac{1}{2h} \delta_{tt} v_N + \alpha v_N = \beta
\]

with \(t_j = jh, \ h = 1/N \). Note that the finite-difference approximation is singular at \(t_j = 0 \). Use the result in part (a) to redefine the approximation of the ODE when \(t_j = 0 \) (i.e. when \(j = 0 \)). Eliminate the ghost values \(v_{-1} \) and \(v_{N+1} \) from the resulting equations so that the linear system is tridiagonal (similar to what was discussed in class).

(c) Use your code to solve the BVP for the case \(Q(t) = 1 - t^2 \) and \(\alpha = \beta = 1 \). Compare the numerical solution with the exact solution for \(N = 40, 80 \) and 160, and verify the method is second-order accurate. Plot the numerical solution for \(N = 40 \) and the exact solution on the same graph.

2. Consider the nonlinear BVP

\[u'' - \cosh(\lambda u) = 0, \quad -1 \leq t \leq 2, \quad u(-1) = 1, \quad u(2) = 3 \]

Note that when \(\lambda = 1 \), the BVP agrees with the one considered in Problem Set 6. A finite-difference approximation of the BVP is

\[
\frac{1}{h^2} \delta_t^2 v_j - \cosh(\lambda v_j) = 0, \quad j = 1, 2, \ldots, N-1, \quad v_0 = 1, \quad v_N = 3.
\]

For a path-following procedure, a key step is to determine how \(\mathbf{v} = (v_0, v_1, \ldots, v_N) \) changes with the parameter. Let us consider this step alone (and not the whole path-following procedure). Write a code to determine \(\mathbf{v}_\lambda \), the derivative of \(\mathbf{v} \) with respect to \(\lambda \), when \(\lambda = 1 \). (Hint: this code should be a minor modification of the one used in Problem Set 6.) Use \(N = 60 \) and plot \(\mathbf{v}_\lambda \) versus \(t_j \).

3. Consider the heat equation

\[u_t = k u_{xx} + Q(x, t), \quad 0 \leq x \leq L, \quad t \geq 0, \]

with initial condition \(u(x, 0) = f(x) \) and Neumann-type boundary conditions \(u_x(0, t) = \alpha(t) \) and \(u_x(L, t) = \beta(t) \). An explicit finite-difference approximation is

\[v_j^{n+1} = v_j^n + \nu \delta_x^2 v_j^n + \Delta t Q(x_j, t_n), \quad 0 \leq j \leq N, \quad n \geq 0 \]

with \(v_j^0 = f(x_j) \), \(\delta_x v_0^n = 2\Delta x \alpha(t_n) \), and \(\delta_x v_N^n = 2\Delta x \beta(t_n) \). Here \(\nu = k\Delta t/\Delta x^2 \).

(a) Find \(Q(x, t), \ f(x), \ \alpha(t) \) and \(\beta(t) \) so that \(u(x, t) = \cos(2t) \sin(3x) \) is an exact solution of the initial-boundary-value problem (IBVP).

(b) Write a code to solve the IBVP numerically using the finite-difference approximation above. Test your code using \(k = L = 1 \) and the functions found in part (a) so that an exact solution is known. Compute the error in the numerical solution at \(t = .2 \) for \(N = 40, 80 \) and 160 with \(\Delta t \) chosen such that \(\nu \) has the same value (less than 0.5) for each \(N \). Verify the rate of convergence for the approximation.