MULTIVARIABLE DIFFERENTIAL CALCULUS

Let $c \in \mathbb{R}^m$, $f : \mathbb{R}^m \to \mathbb{R}^m$

$f(x, y) \quad (m = 2, m - 1)$

steepness at c in the direction of u

$c \in S$ - interior

$\Rightarrow \exists \, B(c) \subset S$

DEF: THE DIRECTIONAL

derivative of f at c in the direction u, $f'(c; u)$, is

$$f'(c, u) = \lim_{h \to 0} \frac{f(c + hu) - f(c)}{h}$$

(sometimes assume $\|u\| = 1$)
\[u = e_k = (0, 0, \ldots, 0, 1, 0, \ldots, 0) \]

Then
\[f(c, e_k) = \Delta_k f(c) \]

is a partial derivative.

Usually, we look at \(f : \mathbb{R}^n \to \mathbb{R} \)
\[f = f(x_1, \ldots, x_n) \]
and partial derivatives \(\partial f / \partial x_k \).

If \(f = (f_1, \ldots, f_m) \), then
\[f(c, v) \text{ exists if } f_k(c, v) \text{ exist for } k = 1, \ldots, m \text{ and then} \]
\[f(c, v) = (f_1(c, v), \ldots, f_m(c, v)) \]
for \(v \neq v_k \)
\[\Delta_k f(c) = (\Delta_k f_1(c), \ldots, \Delta_k f_m(c)) \]
1. \(f(t) = f(c+tv) \), then
 \[f'(t) = f'(c, v) \]
 In general
 \[f'(t) = f'(c+vt, v) \]

2. \(f(x) = \|x\|^2 \), then
 \[f(t) = f(c+tv) = (c+tv)\cdot(c+tv) \]
 \[= \|c\|^2 + 2t \cdot c \cdot v + t^2 \|v\|^2 \]
 \[\Rightarrow f'(t) = 2c \cdot v + 2t \|v\|^2 \]
 \[\Rightarrow f'(0) = f'(c, v) = 2c \cdot v \]

3. \(f: \mathbb{R}^m \rightarrow \mathbb{R}^m \) is linear.

 \[f(\alpha x + \beta y) = \alpha f(x) + \beta f(y) \]
 for all \(x, y \in \mathbb{R}^m \), \(\alpha, \beta \in \mathbb{R} \).

 \[f'(c, v) = f'(v) \]
Directional Derivatives & Continuity

If \(f(c, v) \) exists for \(v \), then \(D_v f(c) \) if for \(k \in \mathbb{R} \), \(-j, ... \).

Converse is not true:

\[
 f(x, y) = \begin{cases}
 x + y & \text{if } x \leq 0 \text{ or } y \leq 0 \\
 1 & \text{otherwise}
\end{cases}
\]

\[
 \Rightarrow D_1 f(0, 0) = D_2 f(0, 0) = 1
\]

\[
 v = (\alpha_1, \alpha_2) \quad \alpha_1, \alpha_2 \neq 0
\]

\[
 \frac{f(0 + \alpha_2 v) - f(0)}{\alpha_1} = \frac{f(\alpha_2 v)}{\alpha_2} \rightarrow \frac{1}{\alpha_1}
\]

Limit does not exist

The function is not continuous at 0 either.
I can have \(f(1, u) \) for every \(u \), but not be continuous at \(u \).

\[
f(x, y) = \begin{cases}
\frac{xy^2}{x^2 + y^4} & x \neq 0 \\
0 & x = 0
\end{cases}
\]

Let \(u = (a_1, a_2) \)

\[
\Rightarrow \frac{f(0 + h(u)) - f(0)}{h} = \frac{f(ha_1, ha_2)}{h}
\]

\[
= \frac{a_1 a_2^2}{a_1^2 + h^2 a_2^4}
\]

\[
\Rightarrow \frac{1}{f'(0, u)} = \frac{a_2^2}{a_1}, \text{ if } a_1 \neq 0
\]

\[f'(0, u) \neq 0 \text{ for } a_1 = 0
\]

\[
f'(0, u) \neq 0
\]
But take \(x = y^2 \)

\[\Rightarrow f(y^2, y) = \frac{y^4}{2y^2} = \frac{1}{2} \]

\[\Rightarrow f \text{ takes on the value } \frac{1}{2} \]

on \(x = y^2 \) except at \(x = y = 0 \) where \(f = 0 \)

\[\Rightarrow \text{ DISCONTINUITY.} \]

Total Derivative

One-dimensional case

\[f(x + h + \beta k) = f(x) + f'(x) \beta h + o(h) \]

\[= f(x) + \beta f'(x) h + \beta f'(x) k + \ldots \]

Linear Approximation

\[h \mapsto f'(x) h - \text{ linear function of } \beta \]
\[f: \mathbb{S} \rightarrow \mathbb{R}^n, \quad \mathbf{s} \in \mathbb{R}^n \]

Definition:

\(f \) is differentiable at \(\mathbf{x} \in \mathbb{S} \) if for sufficiently small \(\mathbf{v} \) (i.e., \(\| \mathbf{v} \| < r \) for some \(r \))

\[f(\mathbf{x} + \mathbf{v}) = f(\mathbf{x}) + f'(\mathbf{x}) \mathbf{v} + O(\| \mathbf{v} \|^2) \]

for some linear transformation \(f'(\mathbf{x}) \mathbf{v} \); \(f'(\mathbf{x}) \) - total derivative of \(f \) at \(\mathbf{x} \)

\[f'(\mathbf{x})(\alpha \mathbf{v} + \beta \mathbf{w}) = \alpha f'(\mathbf{x}) \mathbf{v} + \beta f'(\mathbf{x}) \mathbf{w} \]

\(f'(\mathbf{x}) \) is a matrix

Tangent Plane:

\[f(\mathbf{x}_1, \mathbf{x}_2) \]

\[f(\mathbf{x}_1, \mathbf{x}_2) + f'(\mathbf{x}_1, \mathbf{x}_2) \mathbf{v} \]

\[f(\mathbf{x}_1, \mathbf{x}_2) \]

\[f(x_1, x_2) \]

\[\mathbf{x}_2 \]

\[(x_1, x_2) \]
Aside: symbols $O(h)$ and $o(h)$

(i) \(f(h) = O(h) \) as \(h \to 0 \) if \(|f(h)| < C|h| \), for some constant \(C \), or more precisely, if

\[f(h) = h \cdot g(h), \]

where \(|g(h)| < c \) and \(\lim_{h \to 0} g(h) \neq 0 \).

(ii) \(f(h) = o(h) \) as \(h \to 0 \)

\[\frac{f(h)}{h} \to 0. \]
Let $f(x)$ be differentiable at x. Then the directional derivative $f'(x, u)$ exists for every $u \in \mathbb{R}^n$, and
\[f(x + hu) - f(x) \quad \frac{f(x + hu) - f(x)}{h} = f'(x) u + \frac{\sigma(h)}{h} \]
\[f'(x, u) = \lim_{h \to 0} \frac{f(x + hu) - f(x)}{h} = f'(x) u \]
Theorem: If \(f \) is differentiable at \(x \), then \(f \) is continuous at \(x \).

Proof: \(f(x + \epsilon) - f(x) = f'(x) \epsilon + o(\|\epsilon\|) \)

\[= f'(x) (e_1 \epsilon_1 + \cdots + e_n \epsilon_n) + o(\|\epsilon\|) \]

\[= \epsilon_1 f'(x) e_1 + \cdots + \epsilon_n f'(x) e_n + o(\|\epsilon\|) \]

\[(e_j = (0, \ldots, 0, 1, 0, \ldots, 0)) \]

As \(\|\epsilon\| \to 0 \), so do \(\epsilon_j \).

\[\Rightarrow \| f(x + \epsilon) - f(x) \| \to 0 \text{ as } \|\epsilon\| \to 0 \]
The matrix for $f'(x)$:

$\nu = \nu_1 e_1 + \cdots + \nu_m e_n$

$f'(x) \nu = \nu_1 f'(x) e_1 + \cdots + \nu_m f'(x) e_n$

$= \nu_1 f'(x, e_1) + \cdots + \nu_m f'(x, e_n)$

$= \nu_1 D_1 f(x) + \cdots + \nu_m D_m f(x)$

$f = (f_1, \ldots, f_m)$

$D_{e_k} f = (D_{e_k} f_1, \ldots, D_{e_k} f_m)$

$(f'(x) \nu)_k = \nu_1 D_1 f_k(x) + \cdots + \nu_m D_m f_k(x)$

$
\Rightarrow \int f'(x) \, df = D_1 f_1 (x) + \cdots + D_m f_m (x)
$

$\Rightarrow \text{Matrix for } f(x)$

$D f(x) = \begin{bmatrix}
D_1 f_1 (x) & \cdots & D_m f_1 (x) \\
D_1 f_m (x) & \cdots & D_m f_m (x)
\end{bmatrix}$
Alternative notation

\[
\begin{bmatrix}
\frac{df_1}{dx_1} & \frac{df_1}{dx_n} \\
\frac{df_2}{dx_1} & \frac{df_2}{dx_n} \\
\vdots & \vdots \\
\frac{df_m}{dx_1} & \frac{df_m}{dx_n}
\end{bmatrix}
\]

Jacobian matrix

\[f: \mathbb{R}^n \rightarrow \mathbb{R}^m \]

\[
\det f'(x) = \frac{\partial (f_1, \ldots, f_m)}{\partial (x_1, \ldots, x_m)}
\]

Jacobian determinant
If \(f : S \rightarrow \mathbb{R}^n \), then
\[
\nabla f(x) \cdot \nu = \text{dot product}
\]

\[
\text{with} \quad \nabla f(x) = \left(D_1 f(x), D_2 f(x), \ldots, D_n f(x) \right)
\]

If \(f : S \rightarrow \mathbb{R}^m \), then
\[
f'(x) \nu = \left(\nabla f_1(x) \cdot \nu, \nabla f_2(x) \cdot \nu, \ldots, \nabla f_m(x) \cdot \nu \right)
\]

\[
\| f'(x) \nu \| = \| \sum_{k=1}^{m} (\nabla f_k(x) \cdot \nu) e_k \| \leq \|
\]

\[
\leq \sum_{k=1}^{m} | \nabla f_k(x) \cdot \nu | \| e_k \|
\]

\[
= \sum_{k=1}^{m} | \nabla f_k(x) \cdot \nu | \| e_k \|
\]

\[
\leq \sum_{k=1}^{m} \| \nabla f_k(x) \| \| \nu \|
\]

\[
= \| \nabla \| \frac{m}{2} \| \nabla f_k(x) \|
\]
THE CHAIN RULE

Theorem
If \(g \) is differentiable at \(a \) and \(f \) is differentiable at \(g(a) = b \in \mathbb{R} \), then \(f \circ g \) is differentiable at \(a \) and

\[
(f \circ g)'(a) = f'(g(a)) \cdot g'(a)
\]

Proof
Let \(h = f \circ g \).

\[
h(a + y) - h(a) = \]

\[
= f(g(a + y)) - f(g(a)) =
\]

\[
= f(g(a) + g'(a)y + o(y)) - f(g(a)) =
\]

\[
= f(g(a)) + f'(g(a)) (g'(a)y + o(y)) - f(g(a)) =
\]

\[
= f'(g(a)) (g'(a)y + o(y))
\]
But \(f'(g(a)) \cdot Df(\|y\|) = \sigma(\|y\|) \), so

\[
h'(a + y) - h'(a) =
\]
\[
= f'(g(a)) g'(a) y + o(\|y\|)
\]

\[
\Rightarrow D(h \circ g)(a) = Df(g(a)) \cdot Dg(a)
\]

\[\text{MATRICES}\]

\[\mathbb{R}^k \xrightarrow{g} \mathbb{R}^m \xrightarrow{f} \mathbb{R}^n \]

\[x \xrightarrow{g} y \xrightarrow{f} z\]

\[
\frac{\partial z_i}{\partial x_j} = \sum_{k=1}^{n} \frac{\partial z_i}{\partial y_k} \cdot \frac{\partial y_k}{\partial x_j}
\]
EXAMPLE: \(f: \mathbb{R}^2 \rightarrow \mathbb{R} \), \(h: \mathbb{R}^2 \rightarrow \mathbb{R} \)

\[
\begin{align*}
\frac{\partial h}{\partial x} &= \frac{\partial h}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial h}{\partial v} \frac{\partial v}{\partial x} \\
\frac{\partial h}{\partial y} &= \frac{\partial h}{\partial u} \frac{\partial u}{\partial y} + \frac{\partial h}{\partial v} \frac{\partial v}{\partial y}
\end{align*}
\]

(1)

because

\[
Df = \left[\begin{array}{cc}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y}
\end{array} \right] \quad Dh = \left(\frac{\partial h}{\partial u}, \frac{\partial h}{\partial v} \right)
\]

Note: Abuse of notation in (1), \(\frac{\partial h}{\partial x} \) is really \(\frac{\partial (h \circ f)}{\partial x} \), etc.
Sufficient condition for differentiability

Recall: If f is differentiable at a point a, it is continuous at a.

$$ f(x, y) = \begin{cases} \frac{xy^2}{x^2 + y^4} & (x, y) \neq (0, 0) \\ 0 & (x, y) = (0, 0) \end{cases} $$

is not continuous, yet it has directional derivatives in every direction.

\Rightarrow existence of directional derivatives of $f(x, y)$ in every direction, still does not imply differentiability.
THM: \[\text{Let } f : \mathbb{R}^n \to \mathbb{R}^m. \]

Then \(f \) is differentiable at \(a \in \mathbb{R}^n \) if and only if each component function \(D_j f_i \) is continuous at \(a \).

Proof: Clearly \(f : \mathbb{R}^n \to \mathbb{R}^m \) is differentiable at \(a \)

if \(f_i \) are differentiable for \(i = 1, \ldots, m \),

(\text{convergence in } \| \cdot \| \text{ is equivalent to convergence in components})
So, let $f: \mathbb{R}^n \to \mathbb{R}$. Then (2)

$$f(a + h) - f(a) =$$

$$= f(a_1 + h_1, a_2 + h_2, \ldots, a_n + h_n) - f(a_1, a_2, \ldots, a_n)$$

$$= f(a_1 + h_1, a_2 + h_2, \ldots, a_{n-1} + h_{n-1}, a_n + h_n) - f(a_1 + h_1, a_2 + h_2, \ldots, a_{n-1} + h_{n-1}, a_n)$$

$$+ f(a_1 + h_1, a_2 + h_2, \ldots, a_{n-1} + h_{n-1}, a_n) - f(a_1 + h_1, a_2 + h_2, \ldots, a_{n-1} + h_{n-1}, a_n)$$

$$+ f(a_1 + h_1, a_2 + h_2, \ldots, a_{n-1} + h_{n-1}, a_n) - f(a_1 + h_1, a_2 + h_2, \ldots, a_{n-1} + h_{n-1}, a_n)$$

$$\Rightarrow \text{the term is by the mean-value theorem}$$

$$h_1 \cdot D_1 f(a_1 + h_1, a_2 + h_2, \ldots, a_{n-1} + h_{n-1}, a_n) =$$

$$= h_1 \cdot D_1 f(c_1)$$

for some c_1.
\[
\lim_{h \to 0} \frac{1}{n} \sum_{i=1}^{n} \left| D_i f(c_i) - D_i f(a) \right|
\leq \lim_{h \to 0} \frac{1}{n} \sum_{i=1}^{n} \left| D_i f(c_i) - D_i f(a) \right|
\leq 0
\]

since \(D_i f\) are continuous at \(a\).
HIGHER PARTIAL DERIVATIVES

DEF: \[D_{ij} f(x) = D_i (D_j f(x)) \]

for \(f: \mathbb{R}^n \to \mathbb{R} \).

Counterexample:

\[f(x, y) = \begin{cases} \frac{xy}{x^2+y^2} & \text{if } (x, y) \neq (0, 0) \\ 0 & \text{if } (x, y) = (0, 0) \end{cases} \]

\[D_1 f(x, y) = \begin{cases} \frac{y(x^4+4xy^2-y^4)}{(x^2+y^2)^2} & \text{if } (x, y) \neq (0, 0) \\ 0 & \text{if } (x, y) = (0, 0) \end{cases} \]

\[D_2 f(x, y) = \begin{cases} \frac{x(x^4-4x^2y^2-y^2)}{(x^2+y^2)^2} & \text{if } (x, y) \neq (0, 0) \\ 0 & \text{if } (x, y) = (0, 0) \end{cases} \]
\[D_1 f(0, y) = -y \]
\[D_{21} f(0, y) = -1, \quad D_{21} f(0, 0) = -1 \]
\[D_2 f(x, 0) = x \]
\[D_{12} f(x, 0) = 1, \quad D_{12} f(0, 0) = 1 \]
\[\Rightarrow D_{12} f(0, 0) \neq D_{21} f(0, 0) \]

But:

This implies that \(D_{12} f(x, y) \) and \(D_{21} f(x, y) \) are not continuous in some open set \(G \subset \mathbb{R}^2 \), then

\[D_{12} f(x, y) = D_{21} f(x, y) \]

on \(G \).

(Why is \(\mathbb{R}^2 \) enough?)
Proof: Consider the points $(x+yh, y+kh)$.

For h small enough, all these points are in S_j and so is the rectangle whose vertices they are.

Consider

$$A = f(x+yh, y+kh) - f(x+yh, y) - f(x, y+kh) + f(x, y).$$

Let

$$
\gamma(x) = f(x, y+kh) - f(x, y)
$$

Then

$$A = \gamma(x+yh) - \gamma(x) =
\gamma'(x+\theta h) h
= [D_1 f(x+\theta h, y+kh) - D_1 f(x+\theta h, y)] h
= D_2 f(x+\theta h, y+kh, y+\bar{\theta} h) h k.$$
On the other hand, let

\[y'(y) = f(x + \theta \mathbf{e}, y) - f(x, y) \]

Then

\[A = y'(y + \mathbf{e}) - y'(y) = \]

\[= y'(y + \theta \mathbf{e}) \mathbf{e} = \]

\[= \left[\nabla_x f(x + \theta \mathbf{e}, y + \theta \mathbf{e}) - \nabla_x f(x, y + \theta \mathbf{e}) \right] \mathbf{e} \]

\[= \nabla_{\mathbf{x}} f(x + \theta \mathbf{e}, y + \theta \mathbf{e}) \mathbf{e} \mathbf{e} \]

\[\Rightarrow \nabla_{\mathbf{x}} f(x + \theta \mathbf{e}, y + \theta \mathbf{e}) = \]

\[= \nabla_{\mathbf{x}} f(x + \theta \mathbf{e}, y + \theta \mathbf{e}) \]

As \(\mathbf{e}, \mathbf{e} \to 0 \)

\[\nabla_{\mathbf{x}} f(x, y) = \nabla_{\mathbf{x}} f(x, y) \]

by continuity.
TAYLOR'S FORMULA FOR
FUNCTIONS $f: \mathbb{R}^n \to \mathbb{R}$

Recall: if $f'(x)$ exists, then for any vector t, the directional derivative $f'(x; t)$ exists and equals

$$f'(x; t) = f'(x) \cdot t =$$

$$= D_1 f(x) t_1 + \cdots + D_n f(x) t_n.$$

Define higher-order directional derivatives:

$$f''(x; t) = \sum_{i=1}^n \sum_{j=1}^n D_{ij} f(x) t_i t_j,$$

$$f'''(x; t) = \sum_{i=1}^n \sum_{j=1}^n \sum_{k=1}^n D_{ijk} f(x) t_i t_j t_k.$$
\(f^{(n)}(x,t) = \sum_{i=1}^{n-1} \sum_{i=m}^{n} \frac{n-i}{i} D_{i-m} f(x) t_i \cdot \cdot \cdot t_m \)

Theorem: Let \(f \) be \(m \) times continuously differentiable on \(B(a,r) \subseteq \mathbb{R}^n \). Then for every point \(\alpha + \theta \beta \in B(a,r) \),

\[
f(\alpha + \theta \beta) = \sum_{k=0}^{m-1} \frac{1}{k!} f^{(k)}(\alpha; \theta \beta) + \frac{1}{m!} f^{(m)}(\alpha + \theta \beta; \theta \beta)
\]

for some \(0 < \theta < 1 \).

Proof: Let \(s \in \mathbb{R} \) and

\[g(s) = f(\alpha + s \beta) \]

Then

\[g^{(k)}(s) = f^{(k)}(\alpha + s \beta; \beta) \]

by the chain rule.
To justify Taylor's theorem for functions of one variable with Lagrange's remainder,

\[g(x) - g(0) = \sum_{k=1}^{m-1} \frac{1}{k!} g^{(k)}(0) + \frac{1}{m!} g^{(m)}(\xi) \]

\[\Rightarrow f(x+h) - f(x) = \]

\[= \sum_{k=1}^{m-1} \frac{1}{k!} f^{(k)}(a, h) + \frac{1}{m!} f^{(m)}(x+h, \xi) \]

Corollary:

Another Mean-Value Theorem

\[f(x+h) - f(x) = \]

\[= f'(a+\theta h, h) \]
COROLLARY

If \(f'(x) = 0 \) on an open ball \(c \in \mathbb{R}^n \), then \(f(x) = \text{constant} \).

Proof: \(f'(x, h) = f'(x) \cdot e \Rightarrow 0 \)

Note: A closer look at \(f^{(k)}(a; t) \):

\[
f^{(k)}(a; t) = \sum_{i_1=1}^{m} \cdots \sum_{i_k=1}^{m} D_{i_1 \cdots i_k} f(a; t_{i_1}, \ldots, t_{i_k})
\]

Some of these terms are the same, for instance:

\[
D_{123} f(a; t_1, t_2, t_3) = D_{213} f(a; t_2, t_1, t_3) = D_{321} f(a; t_3, t_2, t_1)
\]
How to find the right const:

\[f (x; t) = \sum_{\alpha_1, \ldots, \alpha_m} \frac{\alpha_1! \cdots \alpha_m!}{\alpha_1 + \cdots + \alpha_m = k} D_{\alpha_1} \cdots D_{\alpha_m} f (a) t_1 \cdots t_m \]

This formula has the disadvantage of not having a product of \(k \) terms explicitly.

The estimate of the remainder:

\[|f^{(m)} (x, h)| \leq \sum_{i=0}^{\infty} \sum_{i=0}^{m} \max_{x \in S (a_i)} |D_{i} \cdots D_{i_m} f (x)| \cdot |h_i| \cdot |h_{i_m}| \]

\[\leq c \cdot M \cdot \| h \|_m^m \]

\[\frac{|f^{(m)} (x, h)|}{\| h \|_m^{m-1}} = O (\| h \|) \to 0 \]
⇒ TRIVIAL: If \(f \in C^m(\mathbb{B}(a, r)) \)

then

\[
f(a + t h) = \sum_{k=1}^{m-1} \frac{1}{k!} f^{(k)}(a) t^k + O(||h||^m)
\]

E.g., \(V(r, \mathbf{h}) = \frac{1}{||r + \mathbf{h}||} - \frac{1}{||r - \mathbf{h}||} \quad r = (x, y, z) \)

Let \(f(x) = \frac{1}{x^2} \Rightarrow V(r, \mathbf{h}) = f(r + \mathbf{h}) - f(r - \mathbf{h}) \)

\[
= f(r) - f(r) + 2 \nabla f(r) \cdot \mathbf{h} + O(||h||^2)
\]

\[
= -2 \frac{r \cdot \mathbf{h}}{|r|^3} + O(||h||^2)
\]

Diagram: DIPole approximation
UNCONSTRAINED EXTREMA OF
FUNCTIONS ON \mathbb{R}^n

Theorem Let $f : A \to \mathbb{R}$, A open in \mathbb{R}^n. If $a \in A$ is a local extremum of f and $D_i f(a)$ exist, then $D_i f(a) = 0$

Proof Let

$$g_i(x) = f(a_1, \ldots, x_i, \ldots, a_n)$$

Then $g_i(x)$ has an extremum at $x = a_i$, so $g_i'(a_i) = D_i f(a) = 0$

Examples

1) $f(x,y)$: If there is a max or min at (x_0, y_0), then $D_i f(x_0, y_0) = D_j f(x_0, y_0) = 0$

$\nabla f(x_0, y_0) = (f(x_0, y_0), f(x_0, y_0))$ - Tangent plane is horizontal at $(x_0, y_0, f(x_0, y_0))$
2.) \(f(x,y) = x^2 - y^2 \)

\[x = 0 : \quad f(10, y) = - y^2 \]
\[y = 0 : \quad f(x, 0) = x^2 \]
\[D_1 f(10,0) = D_2 f(10,0) = 0 \]

Sufficient condition for an extremum

Let \(f \in C^2(A) \), \(A \subset \mathbb{R}^n \), \(a \in A \)

\[f'(a) = 0. \]

By Taylor's formula

\[f(a+h) = f(a) + \frac{1}{2!} f''(a, h) + o(h^2) \]
IDEA: a is a max, min, or saddle if \(f''(a, b) < 0 \), \(> 0 \), or changes sign, respectively, for all \(h \).

We need, and have, a bit more: take a closer look at \(f^n(a, b) \)

\[
f^n(a, b) = \sum_{j=1}^{m} \nabla_{h_j} f(a) \cdot h_i \cdot h_j = \\
= \langle h, f^n(a) h \rangle
\]

where

\[
f^n(a) = \\
= \begin{bmatrix}
\frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\
\frac{\partial^2 f}{\partial x_1 \partial x_2} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^2 f}{\partial x_1 \partial x_n} & \frac{\partial^2 f}{\partial x_2 \partial x_n} & \cdots & \frac{\partial^2 f}{\partial x_n^2}
\end{bmatrix}
\]
The Hessian, $f''(a)$, is a symmetric matrix

\[f''(a) = \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\partial^2 f}{\partial x_i \partial x_j} n_i \cdot n_j \]

k can be diagonalized in an orthonormal basis $\{n_1, \ldots, n_k\}$.

The components of $f''(a)$ in this basis are

\[f''_{ii} = \sum_{j=1}^{k} \frac{\partial^2 f}{\partial x_i \partial x_j} n_i \cdot n_j \quad \text{and} \quad f''_{ij} = 0 \quad \text{for} \quad i \neq j \]

Now, if $\lambda_1, \ldots, \lambda_k$ are the eigenvalues of $f''(a)$, then

\[f''(a) \cdot n_i = \sum_{j=1}^{k} \lambda_j n_i \cdot n_j n_j \]
\[\langle h, f(\alpha) h \rangle = \sum_{j=1}^{n} \frac{1}{\alpha_j} - \langle h, v_j \rangle^2 \]

If all \(\alpha_j > 0 \), \(j = 1, \ldots, n \) let \(\alpha = \min \alpha_j \). Then
\[\langle h, f(\alpha) h \rangle \geq \alpha \sum_{j=1}^{n} \langle h, v_j \rangle^2 = L \| h \|^2 \]

\(L \) in this case, we say \(f(\alpha) \) is pointwise definite.

\[\Rightarrow \langle h, f(\alpha) h \rangle \geq \alpha \| h \|^2 > 0 (\| h \|^2) \]

and \(\alpha \) is really a minimum.

Likewise if all \(\alpha_j < 0 \), \(j = 1, \ldots, n \) then
\[\langle h, f(\alpha) h \rangle \leq -L \| h \|^2 \]
\[\rho_{x_0} = \min_{j=1, \ldots, n} H_{f_j} = -\max_{j=1, \ldots, n} \left(f_{x_0} \right) \] (positive definite) \[a \text{ is a minimum} \]

If \(a_j \)'s have mixed signs
and \(\lambda_j \neq 0 \) \(j = 1, \ldots, n \),
a \(\text{is a saddle} \).

\[\text{Hence let } f : A \subset \mathbb{R}^n \rightarrow \mathbb{R}, \quad a \in A, \quad f'(a) = 0 \]

(i) If \(f''(a) \) is positive (negative) definite, \(a \) is a minimum (maximum).

(ii) If \(f''(a) \) has non-zero eigenvalues if mixed
\(f_{x_0} \), \(a \) is a saddle.
Example

\[f(x, y) = ax^2 + by^2 \]

\[D_1 f(x, y) = 2f(x, y) = 0 \]

\[f''(x, y) = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} = f''(0, 0) \]

1.) \(a, b > 0 \)

\[z = f(x, y) \]

minimum

2.) \(a, b < 0 \)

\[z = f(x, y) \]

maximum
3. $a > 0$ $b < 0$

4. $a = 0$ $b = 1$

$f(x, y) = \frac{y^2}{x}$

"Teough"
Special case: \(m = 2 \)

\[
\dot{f}''(a) = \begin{bmatrix}
\frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial x \partial y} \\
\frac{\partial^2 f}{\partial y \partial x} & \frac{\partial^2 f}{\partial y^2}
\end{bmatrix}
\]

\[
\det \left[\dot{f}''(a) - \lambda I \right] =
\]

\[
= \lambda^2 - \nabla^2 f \lambda + \det \dot{f}''(a) \equiv P(\lambda)
\]

\[
\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}
\]

\[
\det \dot{f}''(a) = \left(\frac{\partial^2 f}{\partial x \partial y} \right)^2 - \left(\frac{\partial^2 f}{\partial x^2} \right) \left(\frac{\partial^2 f}{\partial y^2} \right)
\]

Since \(P(\lambda) = \lambda^2 - (\lambda_1 + \lambda_2) \lambda + \lambda_1 \lambda_2 \)

\[
\Rightarrow \lambda_1 \text{ and } \lambda_2 \text{ have the same sign if } \det \dot{f}''(a) > 0
\]

\[
\Rightarrow \text{ maximum or minimum}
\]

\[
\min \Rightarrow \nabla^2 f(a) < 0
\]

\[
\max \Rightarrow \nabla^2 f(a) > 0
\]
Saddle if \(\det f''(a) < 0 \)

Alternatively, if \(\det f''(a) > 0 \)
we must have that
\[
\frac{\partial^2 f}{\partial x^2} \quad \text{and} \quad \frac{\partial^2 f}{\partial y^2}
\]
have the same sign.

\[\Rightarrow\] enough just to check
the sign of one, say
\[
\frac{\partial^2 f}{\partial x^2},
\]
to determine max or min.
Implicit Functions

Examples

1.) $x^2 + y^2 - \alpha = 0$

- $\alpha > 0$:
 - A circle of solutions

- $\alpha = 0$:
 - A single point solution

- $\alpha < 0$:
 - No solution

2.) $xy = 0$

- Two solutions passing through $(0, 0)$
Closer Look

Example 1.

If \(y \neq 0 \), we can express \(y \) in terms of \(x \) as

\[
y = \pm \sqrt{a - x^2}
\]

Note: \(\frac{d}{dy} (x^2 + y^2 - a) = 2y \neq 0 \) there and at \(y = 0 \), \(\frac{d}{dy} (x^2 + y^2 - a) = 0 \)

\(a < 0 \): Since the equation is non-linear, it may not have a solution.

\(a = 0 \) and **Example 2**:

Note that \(\nabla (x^2 + y^2) = (2x, 2y) = \nabla (xy) \) at \(x = y = 0 \) \(\Rightarrow \) the tangent plane is horizontal in both cases.

\(\Rightarrow \) only a single point solution

or multiple solutions?
General problem: m-equations

for m-unknowns \((y_1, \ldots, y_m) = g\)

depending on m-variables \((x_1, \ldots, x_n) = x\)

\[f(x, y) = 0 \quad \forall \in \mathbb{R}^m \to \mathbb{R}^m \]

Because the problem is nonlinear, we must have some particular solution already, say \((x_0, y_0)\), i.e., \(F(x_0, y_0) = 0\).

We are looking for a function \(y = y(x)\), \(y(x) = \tilde{y}\) such that

\[F(x, y(x)) = 0 \quad \text{for all } x \text{ near } x_0. \]

Linear approximation:

\[
D_x F(x, \tilde{y}) (x - x_0) + D_y F(x, \tilde{y}) (y - \tilde{y}) = 0 \\
\text{maximize}
\]

If \([D_y F(x, \tilde{y})]^{-1}\) exists

\[
y = \tilde{y} - [D_y F(x, \tilde{y})]^{-1} D_x F(x, \tilde{y}) (x - x_0)
\]
If \(\tilde{y} \neq 0 \Rightarrow D_y F(x, \tilde{y}) = 2\tilde{y} \neq 0 \)

Linear approximation to \(y(x) \) is
\[
y = \tilde{y} - \frac{\tilde{y}}{y}(x - \tilde{x})
\]

If \(\tilde{y} = 0 \), there is a vertical tangent and \(y(x) \) cannot be approximated linearly.

In fact, two branches
\[
y = \pm \sqrt{1-x^2}
\]
merge near \(\tilde{y} \to 0, \quad x = \pm 1 \).
The linear approximation indicates the general case:

Theorem (Implicit Function) Let \(F(x, y) \) be a \(C^1 \) function defined in a neighborhood of \(x \in \mathbb{R}^n \) and \(y \in \mathbb{R}^m \), taking values in \(\mathbb{R}^m \), on the \(F(x, y) = c \). Then if \(D_y F(x, y) \) is invertible there exists a neighborhood \(U \) of \(x \) and a \(C^1 \) function \(y : V \to \mathbb{R}^m \) such that \(F(x, y(x)) = c \) for every \(x \in U \). Furthermore, \(y \) is unique in that there exists a neighborhood \(V \) if \(y \) \((V = y(U)) \) such that there is only one function \(z \) in \(V \) if \(F(x, z) = c \), namely \(z = y(x) \). Finally, the derivative of \(y \) can be computed by implicit differentiation as

\[
y'(x) = -\left[\frac{\partial F(x, y(x))}{\partial y} \right]^{-1} \frac{\partial F(x, y(x))}{\partial x}
\]
Preliminaries: Matrix norms: Def. If \(M \) is a matrix,

\[
\|M\| = \sup_{\|x\| = 1} \frac{\|Mx\|}{\|x\|} = \text{Samp} \|Mx\|_{\|x\| = 1}
\]

The last expression is the sup of a continuous function on a compact set \(\Rightarrow M \) exists.

(Warning: \(\|M\| \) is not \(M_{ij} \) on \(\mathbb{R}^{m \times n} \)).

Prop 1: \(\|Mx\| \leq \|M\| \|x\| \) (From definition)

Prop 2: \(M_{ij} \leq \|M\| \), \(\|M\|^2 = \sum_{ij} M_{ij}^2 \)

Proof: Let \(e_i = (0, \ldots, e_i^j, \ldots, 0) \), \(\|e_i\| = 1 \)

\[
\Rightarrow (Me_i)_j = M_{ij}
\]

\[
\Rightarrow |M_{ij}| = |(Me_i)_j| \leq \|Me_i\| \leq \|M\| \|e_i\| = \|M\|
\]

\[
\leq \|M\| \|e_i\| = \|M\|
\]
On the other hand,

\[\|M\|_2^2 = \sum_{j,k} \left(\sum_{i=1}^{n} M_{ij} x_i \right)^2 \leq \sum_{j,k} \left(\sum_{i=1}^{n} \left(\sum_{i=1}^{n} M_{ij} x_i \right)^2 \right) \]

\[\leq \left(\sum_{j,k} \|M_{jk}\| \right) \|x\|_2^2 \]

Since \(\|M\|_2 = \sup \frac{\|Mx\|}{\|x\|} \),

\[\|M\|_2^2 \leq \sum_{j,k} \|M_{jk}\| \]

Proof:

\[\|AB\| \leq \|A\| \|B\| \]

Proof:

\[\|ABx\| \leq \|A\| \|Bx\| \leq \|A\| \|B\| \|x\| \]

Lemma 1: If \(\|B\| \|A^{-1}\| < 1 \), then \(A + B \) is invertible.

Proof: Write a "perturbation" series for \((A + B)^{-1}:\)

\[A + B = (I + BA^{-1}) A \]

\[\Rightarrow (A + B)^{-1} = A^{-1} (I + BA^{-1})^{-1} \]
\[= A^{-1} \sum_{k=0}^{\infty} (-1)^k (BA^{-1})^k \]

Now
\[\| S_m - S_n \| = \| \sum_{k=m+1}^{\infty} (-1)^k (BA^{-1})^k \| \leq \]
\[\leq \| A^{-1} \| \sum_{k=m}^{\infty} \left(\| B \| \| A^{-1} \| \right)^k \leq \]
\[\leq \| A^{-1} \| \left(\| B \| \| A^{-1} \| \right)^m \frac{1}{1 - \| B \| \| A^{-1} \|} \]

\[\Rightarrow \| B \| \| A^{-1} \| < 1. \]

By Prop 2, a matrix series converges component-wise if and only if it converges in the norm.

\[\Rightarrow \text{even when the matrix norm is complete and the series for } (A + B)^{-1} \text{ converges if } \| B \| \| A^{-1} \| < 1. \]
\[(A + B)^{-1} - A^{-1} = \sum_{k=1}^{\infty} (-1)^k \left(B A^{-1} \right)^k \]

which again converges if \(\|B\| \|A^{-1}\| < 1 \).

\[\text{Lemma } \quad \| (A + B)^{-1} - A^{-1} \| \to 0 \quad \text{if } \|B\| \to 0 \]

\[\text{Proof: } \quad \| (A + B)^{-1} - A^{-1} \| \leq \frac{\|B\| \|A^{-1}\|}{1 - \|B\| \|A^{-1}\|} \to 0 \]

\[\Rightarrow \quad \text{Conclusion: } A^{-1} \text{ is a continuous function of the entries of } A \]

\[\text{Newton's method: } \quad \text{Find a zero of a function } f(x) \]

\[\text{Graph: } y = f(x) \quad \text{with iterations } x_0, x_1, x_2, \ldots, x_n \]
Approximate \(f(x) \) by its tangent at each approximate zero:

\[
f(x) = f'(x_n)(x - x_n) + f(x_n)
\]

\[
\Rightarrow \text{ since } f(x_{n+1}) < 0,
\]

\[
f'(x_n)(x_{n+1} - x_n) + f(x_n) = 0
\]

\[
x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}
\]

This may work if \(f'(x_n) \neq 0 \)

A simpler, but "slower" scheme:

Have all "tangents" leave slope \(f'(x_0) \)
\[x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \]

This is the scheme we will use in the proof.

Proof of the implicit function theorem:

For simplicity, let \(D_x F = F_x \)
\[D_y F = F_y \]

We are looking for a zero \((m, y)\) of the function \(F(x, y) - c \).

Use the above scheme: iterate the mapping.
\[Ty = y + \left[F_y(x, y) \right]^{-1} (c - F(x, y)) \]

Show there exists a neighborhood \(V \) of \(y \), say \(V = \{ y \mid \|y - \hat{y}\| < \delta \} \),

such that:

(i) \(T : V \to V \)

(ii) \(T \) is a contraction on \(V \)

\(\Rightarrow T \) has a fixed point in \(V \).

This will hold, we expect, if \(x + U \)

\[U = \left\{ \frac{3}{2} \parallel x - \hat{x} \parallel < \varepsilon \right\} . \]
Show T is a contraction:

$$T_y - T_z = y - z + \frac{1}{f'(x,y)} \left[F(x,z) - F(x,y) \right]$$

$$= f_y(x,y) \left[F(x,z) - F(x,y) - f_y(x,y)(z - y) \right]$$

The line segment between y and z:

$$y + t(z - y), \quad 0 \leq t \leq 1$$

Consider

$$h(t) = F(x, y + t(z - y)), \quad (x = \text{const})$$

$$\Rightarrow F(x,z) - F(x,y) = h(1) - h(0)$$

$$= \int_0^1 h'(t) \, dt =$$

$$= \int_0^1 f_y(x, y + t(z - y)) \cdot (z - y) \, dt$$
\[F(x_2) - F(x,y) = F_y(x, \bar{y})(2 - y) \]

\[\frac{1}{b} \int_0^b \left[F_y(x, y + t(2 - y)) - F_y(x, \bar{y}) \right] (2 - y) \, dt \]

\[(b/0 \quad \frac{1}{b} \int_0^b \, dt = 1) \]

Since \(F_y \) is continuous,
\[
\| x - x_1 \| < \varepsilon, \quad \| y - \bar{y} \| < \delta
\]
\[
\Rightarrow \| y + t(2 - y) - \bar{y} \| \leq \| y - \bar{y} \| + t \| 2 - \bar{y} \| < 3\delta
\]

Then
\[
\| F_y(x, y + t(2 - y)) - F_y(x, \bar{y}) \| \leq 1
\]
given any \(\varepsilon \). (If \(\varepsilon, \delta \) are small enough.)
\[\Rightarrow \| F_y(x, y + t(z - y)) - F_y(x, y) \| \leq \lambda \| z - y \| \]

From (*)

\[\| F(x, z) - F(x, y) - F_y(x, y)(z - y) \| \]

\[\leq \frac{1}{\lambda} \| z - y \| \leq \lambda \| z - y \| \]

\[\Rightarrow \| T_y - Tz \| = \]

\[= \| [F_y(x, y)]^{-1} [F(x, z) - F(x, y) - F_y(x, y)(z - y)] \| \]

\[\leq M \lambda \| z - y \| \]

\[M = \| [F_y(x, y)]^{-1} \| \]

Choose \(\lambda \) so that \(M \lambda = \rho < 1 \)

(i.e., choose \(\delta \) small)

\[\Rightarrow \| T_y - Tz \| \leq \rho \| y - z \|, \quad \rho < 1 \]

\[\Rightarrow T \text{ is a contraction on } \{ y : \| y - y' \| \leq \delta \} \]
Show $T: V \to V$, i.e. ∇T

is small enough $\|y - \tilde{y}\| \leq \delta$

implies $\|Ty - \tilde{y}\| < \delta$.

$$Ty - \tilde{y} = y - \tilde{y} + [F_x(x, \tilde{y})]^{-1} (c - F(xy))$$

$$= [F_x(x, \tilde{y})]^{-1} \left[F(xy) - F(x, \tilde{y}) + F_x(x, \tilde{y})(\tilde{y} - y) \right] \tag{1}$$

$\therefore c = F(xy)$

$$[1] = [F(x, \tilde{y}) - F(xy) + F_x(x, \tilde{y})(x - x)]$$

$$+ F_y(x, \tilde{y})(y - \tilde{y}) - F_x(x, \tilde{y})(x - x)]$$

Since T is differentiable at (x, \tilde{y})

$$\|F(x, \tilde{y}) - F(xy) + F_x(x, \tilde{y})(x - x) + F_y(x, \tilde{y})(y - \tilde{y})\| \leq \lambda (\varepsilon + \tilde{\varepsilon})$$

for any λ of ε and $\tilde{\varepsilon}$ are small enough.
Also \(\| F(x, y) \| (x - x_0) \| \leq K \varepsilon \), \(K = \| F(x, y) \| \)

\[
\Rightarrow \| T_y - y_0 \| \leq M \| F(x, y) - F(x, y) - F_y(x, y)(y - y_0) \|
\leq M (\lambda (\delta + \delta) + K \varepsilon)
\]

\[
M = \| [F_y(x, y)]^{-1} \|
\]

\[
\Rightarrow \| T_y - y_0 \| < \delta \iff \lambda < \frac{1}{2M}
\]

fix the required \(\delta \), and then let \(\varepsilon < \frac{\delta}{2M(x + K)} \).

\[\Rightarrow \text{The unique fixed point } y(x) \neq T\]

lies in \(V = \{ \| y - y_0 \| < \delta \} \) and \(F(x, y_0) = 0 \)

Also \(y(x) \) is continuous in \(x \). We can relocate \(y_0 = T \) and then \(y(x) = \lim y_n. \) The convergence

\(\rightarrow \) uniform in \(x \), \(\| x - x_0 \| < \delta \)

because the contraction constant, \(\rho \), is independent of \(x \).
Show: \(y(x) \) is differentiable

\[
F(x, y) = c, \quad F(x, y(x)) = c
\]

\[
F(x, y(x)) - F(x, y) = 0
\]

Since \(F \) is differentiable at \((x, y) \)

\[

\begin{align*}
0 &= F(x, y(x)) - F(x, y) \\
&= F_x(x, y) (x - x) + F_y(x, y) (y(x) - y) \\
&\quad + R(x)
\end{align*}
\]

\[
R(x) = o \left(\| x - x \|^2 + \| y(x) - y \|^2 \right)
\]

\[
\Rightarrow \quad y(x) - y = - \left[F_y(x, y(x)) \right]^{-1} F_x(x, y) (x - x) \\
- \left[F_y(x, y(x)) \right]^{-1} R(x)
\]

(II)
\[y'(x) \text{ is differentiable at } x \]
\[y'(x) = -\left(F_y(x, y(x))\right)^{-1} F_x(x, y(x)) \]

provided
\[\left(F_y(x, y(x))\right)^{-1} R(x) = \mathcal{O}(\|x - x^*\|) \]

First show: \[\|y(x) - y^*\| \leq a\|x - x^*\| \]
for some constant \(a \) and \(x \) near \(x^* \).

From (10)
\[\|y(x) - y^*\| \leq \|F_y(x, y(x))\| \|F_x(x, y(x))(x - x^*)\| + \|F_y(x, y(x))^{-1} R(x)\| \]
\[\leq M \|x - x^*\| + M \|R(x)\| \]
\[M = \|F_y(x, y(x))\|, \quad K = \|F_x(x, y(x))\| \]

\[10 \]
Now, since \(y(x) \) is continuous in \(x \), if \(x \) is close to \(x^* \), \(y(x) \) will be close to \(y^* \) and we can make

\[
\| R(x) \| \leq \frac{1}{2M} \left(\| x - x^* \| + \| y(x) - y^* \| \right)
\]

\[
\Rightarrow \| y(x) - y^* \| \leq M \| x - x^* \| + \frac{1}{2} \left(\| x - x^* \| + \| y(x) - y^* \| \right)
\]

\[
\Rightarrow \| y(x) - y^* \| \leq \left(2Mk + 1 \right) \| x - x^* \|
\]

Now, since \(\| R(x) \| = \eta \left(\| x - x^* \| + \| y(x) - y^* \| \right) \)

if \(\| x - x^* \| \) and \(\| y(x) - y^* \| \) are small enough

\[
\| R(x) \| \leq \eta \left(\| x - x^* \| + \| y(x) - y^* \| \right)
\]

for any small \(\eta \).
\[
\begin{align*}
\left\| \frac{1}{(F_y(x,y))^{-1}} R(x) \right\| &\leq \\
&\leq M \left\| R(x) \right\| \leq \eta \left(\| x - x_0 \| + \| y(x) - y_0 \| \right) \\
&\leq M \eta \left(\| x - x_0 \| + (Mk+1) \| x - x_0 \| \right) \\
&\leq 2M(Mk+1) \eta \| x - x_0 \| = \eta \| x - x_0 \| \\
\Rightarrow \quad y'(x) &= -\left[F_y(x,y) \right]^{-1} \dot{x}(x,y)
\end{align*}
\]

Now show that \(y(x) \in C' \) by Lemma 2, \(\left[F_y(x,y(x)) \right]^{-1} \) exists for \(x \) close to \(x_0 \), since \(F_y(x,y) \) and \(y(x) \) are continuous.

Repeat the argument from \(x = x_0 \).
at any nearby \(x \):

\[
y'(x) = -\left[F_y(x, y(x)) \right]^{-1} F_x(x, y(x)) \quad (\Delta)
\]

since \(y(x) \) is continuous, and \(\Delta y \) and \(\Delta x \), then so must be \(y'(x) \). \(\Rightarrow y' \in C' \).

Corollary If \(F \in C^k \), \(y(x) \in C^k \).

Proof: (\(\Delta \)) and bootstrapping.

Special case: let \(F(x, y) = f(y) - x \) and \(c = 0 \), with \(x, y \in \mathbb{R}^n \)

\(\Rightarrow y(x) \) solves \(f(y(x)) = x \)

and we get the
Inverse function THEOREM: let f be a C^1 function defined in a neighborhood of y in \mathbb{R}^n taking values in \mathbb{R}^n. If $Df(y)$ is invertible, then there exists a neighborhood U of $x = f(y)$ and a C^1 function $g : U \to \mathbb{R}^n$ such that $f(g(x)) = x$ for every x in U. Furthermore, g maps U one-to-one onto a neighborhood V of \tilde{y} and $g(f(x)) = y$. The function g is unique in that for any $x \in U$ there is only one $z \in V$ with $f(z) = x$, namely $z = f(x)$. Finally $Dg(x) = [Df(g(x))]^{-1}$.
Counterexample: \(f(x, y) = (x^2 - y^2, 2xy) \)

\[
Df(x, y) = \begin{pmatrix} 2x & -2y \\ 2y & 2x \end{pmatrix}
\]

\[
\det Df(x, y) = 4(x^2 - y^2) \]

\(\Rightarrow Df(x, y) \) is invertible \(\forall (x, y) \neq (0, 0) \)

\(\Rightarrow \) Locally, there is a unique inverse, but not globally:

\[
f(-x, -y) = f(x, y)
\]

Geometrically:

\[
(x + iy) = r e^{i\theta}
\]

\[
\rightarrow r e^{2i\theta} = (x^2 - y^2 + 2ixy)
\]
REPRESENTATION OF CURVED SURFACES

1) Parametric: \(g: U \rightarrow \mathbb{R}^n \)
 - Given \(u \in U \subset \mathbb{R}^m \), \(n < m \)
 - \(A = g(U) \)
 - Surface

\((t, \ldots, t_n) = t \in U \rightarrow \) curvilinear coordinates on \(A \)

Often \(A = \{ y \in \mathbb{R}^n : f(y) = 0 \} \)

2) Implicit: \(F: \mathbb{R}^n \rightarrow \mathbb{R}^k \)

\(A = \{ x \in \mathbb{R}^n : F(x) = 0 \} \)

\(k = \text{codimension of } A \)

\(m = n - k = \text{dimension of } A \)
2) Explicit (on a graph)

\((x_1, \ldots, x_n) = (t_1, \ldots, t_m, 0, \ldots, 0)\)

with \(t = x\). For some \(f: \mathbb{R}^m \rightarrow \mathbb{R}^n\)

\[A = \frac{1}{2} (t_1 e_1 + \mathbb{R}^m) \]

\[\mathbf{s} = f(1 + \frac{1}{2}) \]

\[t = (x, y) \]

\[z = 2 \]

Tangent space

Two descriptions

1) All vectors \(v\) in \(\mathbb{R}^n\) (starting at \(0 + x\))
 in the directions tangent to \(A\).

2) The plane, but translated to \(x + \frac{1}{2}\)
We will use mostly $1)$, but they are equivalent.

Examples

$1)$ $S^1 \subset \mathbb{R}^2$: $x^2 + y^2 = 1$

Parametric description: $g(t) = (\cos t, \sin t)$

Boundary: $g: [0, 2\pi) \rightarrow S^1$ leaves $(0, 0)$ out.

Orientation: two switches:

$g: [0, 2\pi) \rightarrow \mathbb{R}^2$ and $g: [-\frac{\pi}{2}, \frac{\pi}{2}) \rightarrow \mathbb{R}^2$

g - one-to-one on each.

Graphed: $x = \pm \sqrt{1 - y^2}$ or $y = \pm \sqrt{1 - x^2}$

$2)$ $y^2 - x^2 = 0$ - implicitly

$g(t) = (t, t^2)$ - parametrically

$y = x^{3/2}$ - explicitly (as a graph)
In class today, we touched upon implicit and parametric representations are smooth.

Explicit \(f(x) = x^{\frac{2}{3}} + 1(0) = \text{non-existent} \)

3) \(\mathbb{R}^2 \subset \mathbb{R}^3 \)

Implicit \(x^2 + y^2 + z^2 = 1 \)

Explicit 6 of spheres: \(x = \pm \sqrt{1-y^2-z^2} \), \(y = \pm \sqrt{1-x^2-z^2} \), \(z = \pm \sqrt{1-x^2-y^2} \)

Parametric \((x, y, z) = (\sin \phi \cos \theta, \sin \phi \sin \theta, \cos \phi)\)

(just like \(x^2 + y^2 = 1 \) \(\phi = \pm \pi, \theta = 0 \))

4) \(\mathbb{S}^1 \subset \mathbb{R}^3 \)

\[\{x^2 + y^2 + z^2 = 1 \} \cap \{ z = 0 \} \]

\(f(x, y, z) = 0 \)

\(f(x, y, z) = (x^2 + y^2 + z^2 - 1, z) \)
Given:
\[g(t) = (t^3, t^2) \]

Parameter:
\[g(t) = (\cos \theta, \sin \theta, 0) \]

Explicit:
\[(y, z) = (\pm \sqrt{1-x^2}, 0) \]
\[(x, z) = (\pm \sqrt{1-y^2}, 0) \]

Not possible to express \(z \) as a graph over \(x \).

5. \(xy < 0 \Rightarrow x < 0 \) or \(y < 0 \)

Near 0: no 1-1

Parametric representation (or explicit) of \(xy = 0 \)

But: perfectly good representations of \(x = 0 \) and \(y = 0 \).

Back to:
\[g(t) = (t^3, t^2) \Leftrightarrow y^2 - x^3 = 0 \]

At the cusp, the circle tangent (velocity) vanishes.
(Necessary, but not sufficient; \[g'(1) = (3t^2, 2t) \]
Extend \(g(t,s) = (t^3 + t^2, s) \)

\[
\begin{pmatrix}
3t^2 & 0 \\
2t & 0 \\
0 & 1
\end{pmatrix}
\]

At \(t = 0 \), \(g'(0,s) = (0,0,0) \)

\(g'(0,s) \) does not have full rank.

Aside: Let \(A \in \mathbb{R}^{m \times n} \)

\[\text{rank}(A) = \text{dim} \left(\text{image}(A) \right) = \]

\# of linearly independent rows or columns of \(A \)

= size of the largest \(k \times k \) submatrix in \(A \) with \(\det \neq 0 \) =

\[= m - \dim \left(\text{kernel}(A) \right) \]

\[\text{kernel}(A) = \mathbb{R}^m, \quad Ax = \mathbb{0} \]
Consider $g : U \to \mathbb{R}^n$, U open in \mathbb{R}^m, $g \in C^1(U)$, $n \geq m$.

Def: g is an **immersion** if

\[
\text{rank } (g'(x)) = m \quad \text{for} \quad x \in U
\]

Def: g is an **embedding** if

- g is an immersion and
- $g : U \to \mathbb{R}^m$ is 1-1
- $g : g(U) \to \mathbb{R}^m$ is continuous

on $g(U)$ as a metric subspace of \mathbb{R}^n

Immersions that are not embeddings

\[
\begin{array}{c}
g \underset{\text{not} \ 1-1} \text{at the crossing}
\end{array}
\]

\[
\begin{array}{c}
U
\end{array}
\]
If it is not continuous at the point of touching (since \(f \) is defined on an open interval, the point is only covered once.)

Neighborhood of the touching point in the metric of \(g(u) \):

However:

- It is an embedding because the touching point is not in \(g(u) \), so small enough neighborhoods are all one to one.
Let \(g : U \rightarrow \mathbb{R}^m \) be an embedding.

Carry the usual coordinates on \(U \subset \mathbb{R}^m \) by \(g \) onto a set of curvilinear coordinates on \(g(U) \).

Fix \(x \in U \) \(\Rightarrow \) \(g(x) = y \in g(U) \)

Fix \(x_2, \ldots, x_m \)-coordinates of \(\mathbb{R}^m \), vary \(x_1 \) \(\Rightarrow \) tangent line on \(U \)

\[f(t) = g(t, x_2, \ldots, x_m) \]

\[\frac{df}{dt}(x) = \frac{df}{dx_1}(x) \neq 0 \]

Tangent vector at \(y \):

\[\frac{df}{dt} \] of \(t \) is a column of \(f'(x) \).
Vary every x_k, $k = 1, \ldots, m$.

\[\begin{array}{c}
\begin{array}{c}
\text{\textbullet} \\
\text{\textbullet}
\end{array}
\end{array} \]

\[\begin{array}{c}
\begin{array}{c}
\text{\textbullet} \\
\text{\textbullet}
\end{array}
\end{array} \]

For curves $\mathbf{y}(\mathbf{v})$ with tangent vectors at \mathbf{y} that are column vectors $\mathbf{y}'(\mathbf{v})$, they are linearly independent (rank $p'(x) = m$).

They span an m-dimensional fullspace of \mathbb{R}^m (image $\mathbf{y}'(\mathbf{v})$).

They are the tangent space of $\mathbf{y}(\mathbf{v})$ at \mathbf{y}.

They are $T_{\mathbf{y}} \mathbf{y}(\mathbf{v})$.

Parametric representation of $T_{\mathbf{y}} \mathbf{y}(\mathbf{v})$:

\[T_{\mathbf{y}} \mathbf{y}(\mathbf{v}) = \{ \sum_{k=1}^{m} \mathbf{x}_k (\mathbf{y}'(\mathbf{v}))_k c_k = \mathbf{g}(\mathbf{v}) | c = (c_1, \ldots, c_m) \in \mathbb{R}^m \} \]
Let \(h : (a,b) \to U \) be a \(C^1 \) curve

\[h(c) = x \]

\[g \circ h : (a,b) \to f(U) \] is a \(C^1 \) curve in \(f(U) \) through \(y \).

\[g \circ h(c) = y \]

Its tangent vector

\[\frac{d}{dt} (g \circ h)(c) = \sum_{k=1}^{m} \frac{\partial g^k}{\partial x^k} (y) \frac{dh^k}{dt}(c) = \]

\[= g'(y) \cdot h'(c) \]

\[\in T_{g(y)} f(U) \]

\[\Rightarrow \text{Prop } T_{g(y)} f(U) = \{ \text{tangent vectors to curves in } f(U) \text{ through } y \} \]

Also: \(g : f(U) \to \mathbb{R}^m \) is continuous \(\Rightarrow \) any curve on \(f(U) \) through \(y \) is in the image of a curve in \(U \) through \(x \).
PARAMETRIC DESCRIPTIONS OF SURFACES

Def. A C^1 m-dim surface (parametrix) in \mathbb{R}^n (m \leq n) is $M_{c} \subset \mathbb{R}^n$ such that for every point y in M_{c} there exists a neighborhood V of y in \mathbb{R}^n and an embedding $g : V \rightarrow \mathbb{R}^n$ such that $g(V) = V \cap M_{c}$. Each embedding is C^1.

THM. Let $g : V \rightarrow \mathbb{R}^m$, V open in \mathbb{R}^m be a C^1 immersion. Then for every point $x \in V$ there exists a neighborhood U of x such that g is 1-1 on U and $g(U)$ is the graph of a C^1 function.
Remark: If \(g \) is an embedding
\[g(\mathcal{U}) \text{ is a neighborhood of } g = g(x) \text{ in } g(\mathcal{U}) \text{ and the result is local on } \mathcal{U}. \]
If \(g \) is just an immersion, the result is local in \(\mathcal{U} \).

\[g'(x) = \sqrt{\left(\frac{\partial g_i}{\partial x_j} \right)^2}, \quad m \leq m \rightarrow m \]

By assumption, rank \((g'(x)) = m \)
\[\Rightarrow g'(x) \text{ has } m \text{ linearly independent rows (and of } m). \]

(After possibly renaming true y's for \(y \in \mathbb{R}^m \)), we can choose the first \(m \) rows to be independent.

\[\begin{pmatrix} v^T & c_{1:m} & \Rightarrow & g(\mathcal{U}) c_{1:m} \\ x = (x_1, \ldots, x_m) & g & y = (y_1, \ldots, y_m) \end{pmatrix} \]
Write
\[(y_1, \ldots, y_m) \equiv (t_1, \ldots, t_m, s_1, \ldots, s_{m-n})\]
Let \(h = (g_1, \ldots, g_m)^T \).
\[\Rightarrow h^T x_j \text{ is the first m rows of } f^T x_j\]
\[\Rightarrow [h^T x_j]^T \text{ exists}\]
\[\Rightarrow \text{By inverse function theorem}\]
There is an open neighborhood \(\hat{U} \) of \(x_j \) s.t. \(h \) has a \(C^1 \)
inverse \(h^{-1} : \hat{V} \to \hat{U} \), \((\hat{V} = \text{open net in } t\)-space)\)
\[x = h^{-1}(t) \quad \text{iff} \quad t = h(x)\]
\[\Rightarrow g \text{ is 1-1 on } \hat{V} .\]
\[\Rightarrow \varphi = (g_m, \ldots, g_n)^T \Rightarrow s = \varphi(x)\]
\[\Rightarrow s = \varphi(h^{-1}(t)) = f(t), \quad t = \varphi \circ h^{-1}\]
\[y = f(x) \text{ for } x \in \hat{V}, \quad \text{iff} \quad y = (t, s), \; t \in \hat{V}, \; s = f(t)\]
\[\Rightarrow \varphi(\hat{V}) \text{ is a graph of } f .\]
EXAMPLES

1. \(g(t) = (\cos t, \sin t)^T = (x, y)^T \)

 Function \(f: \mathbb{R} \to \mathbb{R}^2 \), \(g(\theta) = (\cos \theta, \sin \theta)^T \)

 \((\theta = \text{unit circle}) \)

 \(g'(\theta) = (-\sin \theta, \cos \theta)^T \)

 \(\Rightarrow \) can write \(y = y(x) \) near

 where \(g_2'(\theta) = \cos \theta \neq 0 \)

 and for \(x = x(y) \) near

 where \(g_1'(\theta) = -\sin \theta \neq 0 \)

Choose \((x_0, y_0) = (\cos \theta_0, \sin \theta_0) \), \(\sin \theta_0 \neq 0 \)

\(x_0 \neq \pm 1 \)

\(\Rightarrow \theta = \arccos x \) \(\{ \text{make the branch} \) \(\theta_0 = \arccos x_0 \)

\(\Rightarrow y = \sin (\arccos x) = \pm \sqrt{1-x^2} \)
$2) \quad (x, y, z)^T = g(\theta, \phi) = (\cos \theta \sin \phi, \sin \theta \sin \phi, \cos \theta)$

$g'(\theta, \phi) = \begin{pmatrix}
-\sin \theta \sin \phi & \cos \theta \sin \phi & 0 \\
-\cos \theta \sin \phi & -\sin \theta \sin \phi & 0 \\
0 & 0 & -1
\end{pmatrix}$

If $\dot{\phi} = 0$, 1st column $= D \Rightarrow \text{rank } g' < 1 < 2
\Rightarrow g'$ is not an immersion

Everywhere else, g' is an immersion

$\Rightarrow g'(0 < \phi < \pi) = S^2 - \text{two hemispheres}$

If we want $\theta = 2\pi x(y)$,
we want the first two rows
if g' linearly independent, i.e.

$\left(\begin{array}{c}
-\sin \theta \sin \phi & \cos \theta \sin \phi \\
-\cos \theta \sin \phi & -\sin \theta \sin \phi \\
0 & 0
\end{array} \right)$ must be
\[
\det (2 \times 2) = - \sin \phi \cos \phi \Rightarrow \cos \phi \neq 0 \\
\Rightarrow \text{away from the equation}
\]

For \(x = \cos \Theta \sin \phi, y = \sin \Theta \sin \phi\):

\[\begin{align*}
x^2 + y^2 &= \sin^2 \phi \Rightarrow \phi = \arctan \sqrt{x^2 + y^2} \\
x &= \tan \Theta \Rightarrow \Theta = \arctan \frac{y}{x}
\end{align*}\]

\[z = \cos \phi = \cos (\arcsin \sqrt{x^2 + y^2}) = \pm \sqrt{1 - x^2 - y^2}
\]

In the equation:

\[
y' = \begin{pmatrix} \frac{-\sin \Theta}{\cos \phi} & 0 \\ \frac{\cos \Theta}{\cos \phi} & \cos \Theta \end{pmatrix}
\]

\[x = x(y, z) \Rightarrow \cos \Theta \\
y = y(x, z) \Rightarrow \cos \Theta \\
z = \cos \Theta \Rightarrow y = \tan \Theta + \phi, z = \cos \phi
\]

\[\Rightarrow \phi = \arccos z, \Theta = \arctan \left(\frac{y}{\cos \phi} \right) = \arctan \left(\frac{y}{\cos \phi} \right)
\]

\[x = \cos \Theta \sin \phi = \cos \left[\arcsin \left(\frac{y}{\cos \phi} \right) \right] \cos \left(\arccos z \right) = \pm \sqrt{1 - y^2 - z^2}
\]
Implicit description of surface

\[F : \mathbb{R}^n \rightarrow \mathbb{R}^{n-m}, \quad F \in C^1, \]
\[F(x) = 0 \quad \exists x \mid F(x) = c_j^3 \text{ - level set } \quad F \]

E.g. \[F(x,y) = x^2 + y^2 - 1 \]

Suppose \[M_m = \{ x \mid F(x) = 0 \} \] is a \n\[c^1 \text{ m-dimensional surface (manifold)} \]
\[\text{If } x(t) \text{ in a curve in } M_m \]
\[\Rightarrow F_j(x(t)) = 0 \quad j = 1, \ldots, n-m \]
\[\Rightarrow 0 = \frac{d}{dt} F_j(x(t)) = \nabla F_j(x(t)) \frac{dx}{dt} \]
\[\nabla f_j \perp \frac{dx}{dt}, \quad \text{tangent vector} \]

\[j = 1, \ldots, n-m \]

Since \(x(t) \) is any curve in \(M \) \[\Rightarrow \nabla f_j \perp T_x M \quad \Rightarrow \nabla f_j \in N_x M \]

\[\nabla f = (N_x M_m) \quad \text{Normal space} \]

\[M_m = \mathbb{R}^2 \quad \text{plane} \]

From linear algebra \[N_x M_m \perp T_x M_m \]

\[\text{dim}(n-m) \quad \text{dim}(m) \]

If a \(C^1 \), \(m \)-dimensional surface \(S \) is given by \(F(x) = 0 \Rightarrow \nabla f(x) \) are \(n-m \) vectors in \(N_x M_m \). If \(\nabla f(x) \) are linearly independent,

\[\Rightarrow \nabla f_j(x) \quad \text{from } N_x M_m \]
\[\nabla f_i(x) \text{ are rank-1} \Rightarrow \text{linearly independent if} \]

\[\text{rank} \{f'(x)\} = n-m \text{ (maximal)} \]

\[\text{e.g. } x^2 + y^2 = 1, \quad z = 0 \quad \in \]

\[= \} \theta \in \mathbb{R}^3 \equiv M, \]

Let \(\mathbf{r} = (x, y, z) \)

\[T_{\mathbf{r}} M_1 = \{ \mathbf{r} + \lambda (-\cos \theta, \sin \theta, 0) \} \]

\[N_{\mathbf{r}} M_1 = \{ \mu (2x, 2y, 0) + \mu (0, 0, 1) \} \]
Let $f : \mathbb{R}^m \to \mathbb{R}^{m-m}$ be a C^1 function and let $F(x)$ have rank $m-m$ at every point on the level set $M = \{ x \mid F(x) = c \}$. Then this level set is a C^1 m-dimensional surface (manifold).

Proof: Let $x \in M$. Since $\text{rank}(F(x)) = m-m$, we can find $m-m$ variables x_i such that columns of $DF(x)$ are linearly independent. Let these $m \times (x_1, \ldots, x_{m-m}) = s$. Call

$$(x_{m-m+1}, \ldots, x_m) = t \iff \text{the level set equation is } F(t, s) = c;$$

since F is invertible, by implicit function theorem, we can write $s = f(t)$ for t in some neighborhood of s.

For $s = f(t)$ for t in some neighborhood of s.\[\begin{array}{c}
F(t_1, t_2, s) = 0 \\
2s + 0 \to \text{normal is not horizontal} \Rightarrow \text{tangent plane is not vertical} \Rightarrow \text{can write for } s = f(t_1, t_2) \end{array} \]
Example 1. $x^2 + y^2 + z^2 = 1$

$F(x, y, z) = x^2 + y^2 + z^2$, $F'(x, y, z) = (2x, 2y, 2z)$

$\Rightarrow F'(x, y, z)$ has rank 1 \iff $(x, y, z) = (0, 0, 0)$

\Rightarrow by TMN, all spheres $x^2 + y^2 + z^2 = c$, $c > 0$

are C^1, 2-dimensional surfaces

2.) $x^2 + y^2 + z^2 = 1$, $z = 0$

$F(x, y, z) = (x^2 + y^2 + z^2)$

$= (1, 0, 0)$

$F'(x, y, z) = (2x, 2y, 2z)$

$\Rightarrow \text{rank}(F') = 2 \Rightarrow x \neq 0, y \neq 0$

since $x = y = z = 0$ does not satisfy these equations.

$\Rightarrow \text{rank}(F') = 2$

and H_1 is a 1-dimensional surface

\Rightarrow circle

Remark: In general if $N_x M_m$

is spanned by $\nabla \Phi_i(x)$ \hspace{1cm} (rank $\Phi_i(x) = m - n$)

$\Rightarrow T_x M_m$ is given implicitly as

all the solutions to equations $\nabla \Phi_i(x) = 0$, $i = 1, \ldots, m - n$.

\bullet
MAXIMA AND MINIMA ON SURFACES

"Extreme with side conditions"

Maximize $f(x)$, $f:\mathbb{R}^n \to \mathbb{R}$
subject to the constraints
$g(x) = (g_1(x), \ldots, g_k(x))^T = 0$

($g_i: \mathbb{R}^n \to \mathbb{R}$, $f, g \in C^1$)

Lagrange Multipliers: Form $H: \mathbb{R}^{n+k} \to \mathbb{R}$:

$H(x, \lambda) = f(x) + \lambda_1 g_1(x) + \cdots + \lambda_k g_k(x)$

and find all critical points
(i.e., points where $\nabla H(x, \lambda) = 0$)
of $H(x, \lambda)$. The constrained extreme occur at x-values of
these critical points (see below)
THM \[f: \mathbb{R}^n \to \mathbb{R} \quad \text{and} \quad g: \mathbb{R}^n \to \mathbb{R}^k \]
be \(C^1 \) functions and let \(x \) be a point where \(g(x) = 0 \) and \(\text{rank}(g'(x)) = k \).
If \(f(x) \) is a local minimum for \(f \) in \(\mathbb{R}^n \) and \(g(x) = 0 \), then there exists a neighborhood \(U \) of \(x \) in \(\mathbb{R}^n \) such that \(f(y) \leq f(x) \)
for all \(y \in U \) in \(\mathbb{R}^n \) where \(g(y) = 0 \).
Then there exists \(x' = x+y \) such that \(f(x') = f(x) + \frac{1}{2} \cdot \| y \| \).
\(g(x) \) has a critical point at \((x,1)\).

Remark: Of course this method also finds "saddles."
Proof: \(\text{rank } \langle G(x) \rangle = k \Rightarrow \) the level set \(G(x) = 0 \) is an \((n-k)\)-dimensional, \(C^1 \) surface close to \(x \).

\[H_x(x) = 0 \] just says \(G(x) = 0 \), so we must show \(H_x(x; t) = 0 \) for some \(t \).

Consider any \(C^1 \) curve \(\lambda(t) \) on \(x \) \(G(x) = 0 \), passing through \(x \).

Say \(\lambda(0) = x \).

\(\Rightarrow \) \(\text{fol}(t) \) is a \(C^1 \) function and has a minimum at \(t_0 \).

\(\Rightarrow \frac{d}{dt} (\text{fol}(t)) (0) = 0 \)

(by the 1-d theorem)
But \(\frac{d}{dt} \langle f_0(x), h(t) \rangle = f'(x) \cdot h'(t) \) \(\equiv \) \\
\(\equiv \nabla f(x) \cdot h'(t) \) \\
\(\Rightarrow \nabla f(x) \perp h'(t) = \text{tangent vector to the curve} \) \\
by varying the curves \(\Rightarrow \) \\
\(\nabla f(x) \perp \sum_{i=1}^{n} \frac{\partial f_i}{\partial x_j} g_i(x) = 0 \) \\
\(\Rightarrow \nabla f(x) \in \mathbb{N}_x \sum_{i=1}^{n} \frac{\partial f_i}{\partial x_j} g_i(x) = 0 \) \\
But \(\mathbb{N}_x \sum_{i=1}^{n} \frac{\partial f_i}{\partial x_j} g_i(x) = \text{span} \left\{ \frac{\partial f_i}{\partial x_j}, i=1, \ldots, n \right\} \) \\
\(\Rightarrow \nabla f(x) = - \sum_{i=1}^{n} \nabla g_i (x) \) \\
in some \(\lambda \in \mathbb{R} \) \\
\(\Rightarrow H_x (\tilde{x}, \lambda) = 0 \)
E.g. Points on the ellipse
\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \]
closest to and farthest from the origin.

⇒ Find the extrema of \(x^2 + y^2 \) under the constraint
\[\frac{x^2}{a^2} + \frac{y^2}{b^2} - 1 = 0 \]

\[H(x, y, \lambda) = x^2 + y^2 + \lambda \left(\frac{x^2}{a^2} + \frac{y^2}{b^2} - 1 \right) \]

\[H_x = 2x + 2 \frac{Ax}{a^2} = 0 \]
\[H_y = 2y + 2 \frac{By}{b^2} = 0 \]
\[H_\lambda = \frac{x^2}{a^2} + \frac{y^2}{b^2} - 1 = 0 \]
1) \(x = 0, \quad y = \pm b \quad (\lambda = -b^2) \)

2) \(y = 0, \quad x = \pm a \quad (\lambda = -a^2) \)

Usually, we can figure out if we have a min, max, or saddle from the context.

The second derivative test for a min (max, saddle) of \(f(x) \) on \(f''(x) < 0 \) if the quadratic form

\[\langle u, \frac{d^n f(x)}{d x^n} u \rangle > 0 \]

is positive (negative, zero) definite for all \(u \in T_x, \quad \frac{d^n f(x)}{d x^n} = 0 \).

Proof: Stichcharts