Trigonometric Series

\[f(x) = a_0 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx) \]

How do you compute \(a_n \) and \(b_n \)?

For the moment, cast aside convergence issues.

[Focus on:]

\[\int_{-\pi}^{\pi} \sin nx \, dx = 0 \]

\[\int_{-\pi}^{\pi} \cos nx \, dx = 0 \]

\[\int_{-\pi}^{\pi} \sin nx \cos nx \, dx = \frac{\pi}{n} \quad \text{if } m = n \]

\[\int_{-\pi}^{\pi} \sin nx \sin mx \, dx = 0 \quad \text{if } m \neq n \]
\[
\int_{-\pi}^{\pi} \cos mx \cos nx \, dx = \begin{cases} 0 & \text{if } m \neq n \\ \frac{\pi}{2} & \text{if } m = n \neq 0 \\ \pi & \text{if } m = 0, n = 0 \end{cases}
\]

(Orthogonality of trigonometric functions)

Proof of the last: \[
\int_{-\pi}^{\pi} \cos mx \cos nx \, dx = \frac{1}{n} \left[\sin (m+n)x + \sin (m-n)x \right] \, dx \bigg|_{-\pi}^{\pi} = 0
\]

\[\Rightarrow a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \, dx\]

\[a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \, dx\]

\[b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \, dx\]
Def: \(f(x) \) is periodic with period \(T \) if \(f(x + T) = f(x) \) for all \(x \in \mathbb{R} \).

Thm: For any \(a, b, c, d \in \mathbb{R} \),
\[
\int_a^b f(x) dx = \int_c^d f(x) dx
\]
if \(f \) is periodic with period \(T \).

Let \(f(x) \) be periodic with period \(2\pi \).
Integrable. Define
\[
a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos nt \, dt
\]
and
\[
b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin nt \, dt
\]
If \(f(x) \) is piecewise continuous (continuous except at finitely many discrete points) within one period, where \(f \) has finite jumps) and \(f(x) \) is piecewise continuous.

THEOREM If \(f(x) \) is piecewise continuous

Then

\[
\lim_{n \to \infty} \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx \right)
\]

converges pointwise to

\[
\frac{1}{2} \left(f(x^+) + f(x^-) \right).
\]

In particular, if converges
to \(f(x) \) where \(f(x) \) is continuous.
Proof

Let

\[S_n(x) = \frac{a_0}{2} + \sum_{m=1}^{N} \left(a_m \cos mx + b_m \sin mx \right) \]

Then

\[S_n(x) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \frac{\sin \frac{1}{2} x}{\sin \frac{1}{2} t} \sum_{m=1}^{N} \left(\cos mx \sin mx \right) dt \]

\[= \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \left(\frac{1}{2} \cos \frac{1}{2} x \right) \sin \left(\frac{1}{2} t \right) \sum_{m=1}^{N} \left(\cos mx \sin mx \right) dt \]
Lemma 1 \[\frac{1}{2} + \sum_{m=1}^{N} \cos m(t-x) = \] \[\frac{\sin \left(N \frac{1}{2} \right) \left(\frac{1}{2} \right)}{\sin \left(\frac{1}{2} \right)} \]

Proof: \[\frac{1}{2} + \sum_{m=1}^{N} \cos m \alpha = \] \[\frac{1}{2} \sum_{m=-N}^{N} e^{i m \alpha} = \] \[\frac{1}{2} e^{i N \alpha} \left(1 + e^{i \alpha} + \ldots + e^{i N \alpha} \right) = \] \[\frac{1}{2} e^{i N \alpha} \frac{1 - e^{i (N+1) \alpha}}{1 - e^{i \alpha}} = \] \[\frac{1}{2} e^{i \frac{1}{2} \alpha} \left(e^{i (N+\frac{1}{2}) \alpha} - e^{-i (N+\frac{1}{2}) \alpha} \right) = \] \[\frac{1}{2} \sin \left(N + \frac{1}{2} \right) \alpha \]
\[S_n(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{f(\tau)}{\sin \left(\frac{\tau}{2} \right)} \sin \left(\frac{\tau}{2} (t - x) \right) d\tau \]

\[= \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{f(\tau)}{\sin \left(\frac{\tau}{2} \right)} \sin \left(\frac{\tau}{2} x \right) d\tau \]

We must show:

\[S_n(x) \rightarrow f(x) \quad \text{as} \quad n \rightarrow \infty \]

Let \(M \geq 2 \) \(\forall x \) as piecewise continuous on \(a \leq x \leq b \).

Then \(\int_{-\pi}^{\pi} f(x) \sin \left(\frac{\tau}{2} x \right) d\tau = 0 \), \(\lambda \rightarrow \infty \).

Proof: Can assume \(f(x) \) is continuous. Let \(|f(x)| \leq M \).

\[S_a^b \sin \left(\frac{\tau}{2} x \right) dx = \left[S_a^\frac{b-\pi}{2} + S_{\frac{b-\pi}{2}}^b \right] \sin \left(\frac{\tau}{2} x \right) dx \]

Let \(\frac{b-\pi}{2} = x + \frac{\pi}{2} \)

\[\int_{a}^{b} \frac{b-\pi}{2} \sin \left(\frac{\tau}{2} x \right) dx = -\int_{a+\frac{\pi}{2}}^{b+\frac{\pi}{2}} \sin \left(\frac{\tau}{2} x \right) dx \]
\[\Rightarrow \int_a^b \int_a^b [S(x) - S(x - \frac{\pi}{x})] \sin x \, dx \, dx \]

If \(x \) is large enough, by continuity
\[
|S(x) - S(x - \frac{\pi}{x})| < \epsilon \Rightarrow |\frac{1}{x} \int \frac{1}{a} \int_a^b \sin x \, dx| < \epsilon (b-a) + \frac{2\pi M}{x} \xrightarrow{x \to \infty} 0.
\]

If \(S(x) \) is piecewise continuous
\[a = x_0 < x_1 < x_2 < \ldots < x_n = b \]
apply their proof on every
\[\left[x_0, x_{k+1}\right]. \]

Intuition: Why does this work?

Because \(x \to \infty \), oscillations become stronger and stronger and since \(S(x) \) doesn't change, these are cancellations.
Areas cancel out.

Reflected w.r.t. $b - \frac{\pi}{2}$

$$\int_{a + \frac{\pi}{2}}^{b} [f(x) - s(x - \frac{\pi}{2})] \sin \theta \, dx \to 0$$

Proof of the theorem again:

We must show

$$\lim_{n \to \infty} \frac{\sin \sum_{k=1}^{n} \sin f(x+k \frac{\pi}{n}) \sin \left(m + \frac{\pi}{2} \right) \, dt}{\sin \frac{\pi}{2}}$$

$$= \frac{1}{2} \left(\frac{f(x+1)}{2} + \frac{f(x)}{2} \right).$$

Look at

$$s(t) = \frac{f(x+1) - f(x)}{2 \sin \frac{\pi}{2}}.$$
Since \(f(x) \) is piecewise smooth

\[
\lim_{t \to 0} \frac{f(x+t) - f(x)}{t} = 0
\]

\[
= \lim_{t \to 0^+} \frac{f(x+t) - f(x)}{t}
\]

\[
\geq \lim_{t \to 0^+} \frac{\epsilon \sin \left(\frac{t}{2} \right)}{t}
\]

\[
\Rightarrow \frac{1}{\pi} \int_{0}^{\pi} \sin \left(\frac{2\theta}{\pi} \right) \cos \left(\frac{\theta}{2} \right) \, d\theta
\]

\[
= \frac{1}{2\pi} \int_{0}^{\pi} f(x+t) \cos \left(\frac{\theta}{2} \right) \, d\theta
\]

\[
\Rightarrow \frac{1}{\pi} \int_{0}^{\pi} \cos \left(\frac{2\theta}{\pi} + \frac{\theta}{2} \right) \, d\theta
\]

by Lemma 2, \(\Rightarrow m \to \infty \)

But

\[
\frac{1}{2\pi} \int_{0}^{\pi} \cos \left(\frac{2\theta}{\pi} + \frac{\theta}{2} \right) \, d\theta = \frac{1}{2}
\]

\[
= \frac{1}{2} \left(\frac{\pi}{2} + \sum_{k=1}^{\infty} \cos \left(\frac{\pi k}{2} + \frac{\theta}{2} \right) \right) \to \frac{1}{2}
\]
\[
\lim_{m \to \infty} \frac{1}{m} \sum_{t=0}^{m-1} \frac{f(x + t)}{m} \cos \left(\frac{\pi}{m} + \frac{\pi}{2} \right) dt = \frac{1}{2} \left(f(x^+) + f(x^-) \right)
\]

Similarly

\[
\lim_{m \to \infty} \frac{1}{m} \sum_{t=0}^{m-1} \frac{f(x + t)}{m} \cos \left(\frac{\pi}{m} + \frac{\pi}{2} \right) dt = \frac{1}{2} f(x^-)
\]

\[
\lim_{m \to \infty} m(x) = \lim_{m \to \infty} \sum_{t=0}^{m-1} f(x + t) \cos \left(\frac{\pi}{m} + \frac{\pi}{2} \right) dt
\]

\[
= \frac{1}{2} \left(f(x^+) + f(x^-) \right)
\]

Examples:

\[f(x) = x, \quad -\pi < x < \pi\]

\[f(x) = \frac{\sin x}{x}, \quad -\pi < x < \pi\]
\[x = \frac{\pi}{2} \; \text{if} \; \left(\frac{\pi}{2} \right) = 2 \left(\frac{\min \frac{B}{2} - \min \frac{E}{2} \right) \]

\[\Rightarrow \frac{\pi}{4} = 1 - \text{constant} \]

\[f(x) = x^2 \]

\[a_m = \frac{1}{\pi} \int_0^\pi x^2 \cos mx \, dx = \left(-1 \right)^m \frac{4}{m^2} \]

\[a_0 = \frac{2\pi^2}{3} \]

\[f(x) = \frac{\pi^2}{3} - 4 \left(\frac{\cos x}{2^2} - \frac{\cos 2x}{3^2} + \frac{\cos 3x}{4^2} \right) \]

\[f'(x) \]

\[x \cos x = -\frac{1}{2} \sin x + 2 \frac{(-1)^{\frac{1}{2}}}{2^2 - 1} \]
BESSEL'S INEQUALITY

Let \(f(x) \) be piecewise continuous (not necessarily differentiable). Then,

\[
\frac{1}{\pi} \int_{-\pi}^{\pi} \left[f(x) - \frac{a_0}{2} - \sum_{k=1}^{\infty} \left(a_k \cos kx + b_k \sin kx \right) \right]^2 dx \geq 0
\]

by the orthogonality of trig functions and the definition of \(a_n, b_n \)

\[
\frac{1}{\pi} \int_{-\pi}^{\pi} f(x)^2 dx - \left[\frac{a_0^2}{2} + \sum_{k=1}^{\infty} \left(a_k^2 + b_k^2 \right) \right] \geq 0
\]

Since \(\frac{1}{\pi} \) is finite for all \(n, m \),

\[
\frac{a_0^2}{2} + \sum_{k=1}^{\infty} (a_k^2 + b_k^2) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x)^2 dx
\]

(The fact = sign holds for every integrable \(f(x) \), but we won't prove it.)
Uniform convergence of Fourier series for continuous $f(x)$ with piecewise continuous $f'(x)$:

Let the Fourier coefficients for $f(x)$ be c_n, d_n. Then $c_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \, dx$.

Proof: $c_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \, dx = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \, dx + \frac{1}{\pi} \int_{-\pi}^{\pi} S f(x) \sin nx \, dx = \frac{1}{\pi} \int_{-\pi}^{\pi} S f(x) \sin nx \, dx = n b_n$

By Besel's inequality for $f'(x)$:

$$\sum_{n=1}^{\infty} n^2 (c_n^2 + d_n^2) = \sum_{n=1}^{\infty} n^2 (c_n^2 + d_n^2) \leq \frac{4}{\pi} \int_{-\pi}^{\pi} |f'(x)|^2 \, dx$$
By the Cauchy–Schwarz inequality,

\[|a_n \cos nx + b_n \sin nx| \leq \left(a_n^2 + b_n^2 \right)^{1/2} \left(\cos^2 nx + \sin^2 nx \right)^{1/2} = a_n + b_n \]

Now use \(p^2 \leq \frac{1}{2} (p^2 + q^2) \)

with \(p = \frac{1}{n} \), \(q = \sqrt{a_n^2 + b_n^2} \):

\[|a_n \cos nx + b_n \sin nx| \leq \frac{1}{n} \left(\frac{1}{n} + n^2 (a_n^2 + b_n^2) \right)^{1/2} \]

The term inside the right-hand side is convergent.

Therefore \(\frac{a_0}{2} + \sum_{n=1}^\infty (a_n \cos nx + b_n \sin nx) = f(x) \) converges uniformly.

\[\text{THUS IF f(x) is continuous and piecewise continuously differentiable, then } \text{its Fourier series converges uniformly.} \]
Functional Version of Abel's Test: Let

(i) \(|S_n(x)| = |a_1(x) + \cdots + a_n(x)| < M\), independently of \(m\) and \(x\).

(ii) \(p_1 \geq p_2 \geq \cdots \geq p_m \geq \cdots > 0\), \(p_m \to 0\)

Then \(\frac{1}{n} \sum_{k=1}^{n} a_k(x)\) converges uniformly.

Proof: \[|p_{m+1} a_{m+1}(x) + \cdots + p_m a_m(x)| = |p_{m+1} (S_{m+1}(x) - S_m(x)) + \cdots + p_m (S_m(x) - S_0(x))| = |p_{m+1} S_m(x) - p_m S_m(x) + (p_{m+1} - p_{m+2}) S_{m+1}(x) + \cdots + (p_{m+2} - p_{m+3}) S_{m+2}(x) + \cdots + (p_{m-1} - p_m) S_{m-1}(x)| \leq p_{m+1} M + p_m M + (p_{m+1} - p_{m+2} + p_{m+2} - p_{m+3} + \cdots + p_{m-1} - p_m) M = 2 p_{m+1} M \to 0\] uniformly on \(x\).
Go back to $\phi(x) = \sum_{n=1}^{\infty} (-1)^n \min_{x} x = x$ \(\sum \), \(-\pi \leq x < \pi \)

\[\sum_{n=1}^{N} (-1)^{n+1} \sin n x \]

\[= \int_{-\pi}^{\pi} \sum_{n=1}^{N} (-1)^{n+1} e^{inx} \]

\[= e^{i x} \frac{1 - (-1)^N e^{i N x}}{1 + e^{-i x}} \]

\[= \frac{e^{i x} - (-1)^N e^{i (N+1) x}}{2 \cos \frac{x}{2}} \]

\[\Rightarrow \sum_{n=1}^{N} (-1)^{n+1} \sin n x = \frac{\min x - (-1)^{N+1} \sin \left(N+\frac{1}{2} \right) x}{2 \cos \frac{x}{2}} \]

\[\Rightarrow \sum_{n=1}^{\infty} (-1)^n \sin n x \leq \frac{1}{\cos \frac{x_0}{2}} \quad |x| \leq x_0 < \pi \]
By Abel's Test, \(\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \) converges uniformly in \(-\frac{\pi}{2} + \epsilon < x < \frac{\pi}{2} - \epsilon \), for any \(\epsilon > 0 \).

By periodicity the series converges uniformly to the periodic extension \(f(x) \) of \(f(x) \) for all \(x \) except in the intervals \([\pi n - \epsilon, \pi n + \epsilon] \)

\[n = 0, \pm 1, \pm 2, \ldots \]

Theorem: If \(f(x) \) is piecewise smooth and in-periodic, then its Fourier series converges uniformly on all closed sub-intervals on which \(f(x) \) is continuous.

Proof:

\[f(x) = \frac{2}{n} \sum_{b=1}^{M} [f(x_{b+}) - f(x_{b-})] \phi_{b}(x - x_{b}) \]

where \(x_{b}, b = 1, \ldots, M \) are the discontinuities of \(f(x) \) on \(-\pi < x < \pi \), and \(f(x) \) is continuous and piecewise smooth.