
Ann. Univ. Ferrara - Sez. VII - Sc. Mat.
Vol. IL, 169-182 (2003)

On the Principle of Exchange of Stabilities
in Rayleigh-Bénard Convection, II - No-slip Boundary Conditions.

ISOM H. HERRON (*)

SUNTO - La convezione di Rayleigh-Benard con sorgenti interne di calore ed un campo di
gravità variabile è trattato con condizioni di aderenza al bordo. È provato che il prin-
cipio di scambio di stabilità vale per tutti i numeri di Prandtl, fintanto che il campo
gravitazionale e l’integrale delle sorgenti di calore abbiano lo stesso segno. La dimo-
strazione è basata sull’idea di un operatore positvo, ed usa le proprietà di positività
della funzione di Green. La funzione generalizzata di Green è anche usata.

ABSTRACT - Rayleigh-Bénard convection with internal heat sources and a variable gravi-
ty field is treated with no-slip boundary conditions. It is proved that the principle of
exchange of stabilities holds at all Prandtl numbers, as long as the gravity field and
the integral of the heat sources both have the same sign. The proof is based on the
idea of a positive operator, and uses the positivity properties of Green’s function.
The generalized Green’s function is also employed.
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1. – Introduction.

Problems in fluid mechanics involving the onset of convection have been of
great interest for some time. Theoretical treatments usually invoke the so-
called principle of exchange of stabilities (PES), that is demonstrated physi-
cally as convection occurring initially as a stationary convection. This has been
stated as «all non-decaying disturbances are non-oscillatory in time» [1], [2],
[3]. Alternatively, it can be stated as, «the first unstable eigenvalue of the lin-
earized system has imaginary part equal to zero» [4], [18]. For the Rayleigh-
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Bénard problem, the principle was first proved by Pellew and Southwell [15].
The case they considered was for a fluid in the Boussinesq approximation, with
uniform heating from below, where it turns out that the governing instability
equations have a particular symmetry which determine that all eigenvalues of
the linearized problem are real. This result also plays an important role in the
bifurcation theory of the instability [16]. In 1969, Davis proved that the eigen-
values of the linearized stability equations will continue to be real when con-
sidered as a suitably small perturbation of a selfadjoint problem, such as was
considered by Pellew and Southwell. As one of several applications of his theo-
rem, he studied Rayleigh-Bénard convection with a constant internal heat
source. In part I [6], a more general situation was considered with a variable
heat source and a variable gravity. However, the boundary conditions were as-
sumed to be the stress free conditions. The more complicated situation of no-
slip boundary conditions is treated now in part II.

We follow the formulation of part I [6], [17]. The Boussinesq approximation
is made

¯u

¯t
1u Q˜u42˜p1H(z) Ruez 1Du ,(1)

˜ Qu40(2)

Pr g ¯u

¯t
1u Q˜uh4RN(z) w1Du ,

where u4 (u , v , w), is the velocity, u is the temperature, ez 4 (0 , 0 , 1 ), R 2 is
the Rayleigh number, Pr is the Prandtl number, N(z) 411dq(z), where q(z)
is proportional to the integral of the heat source, with d , a constant being a
scale for q(z), and H(z) 411eh(z); the gravity g(z) being defined by g(z) 4

4g[11eh(z) ], g constant, and e being a scale for h . The equations are assumed
to hold in the layer

V4 ](x , y , z)N2QEx , yEQ , 0 EzE1( .

Next, linearize the perturbed system (1)-(3) and assume disturbances to be
periodic in x (period 2p/a) and y (period 2p/b) with growth rate s , of the
form

u4e st1 iax1 iby u×(z) ,

for the velocity components, with comparable representations for u and p .
Then take curlcurl of the linearized momentum equations to obtain

s (D 2 2k 2 ) w4 (D 2 2k 2 )2 w2k 2 RH(z) u ,(4)

Prsu4 (D 2 2k 2 ) u1RN(z) w ,



RAYLEIGH-BÉNARD CONVECTION, II 171

where D4d/dz , k 2 4a 2 1b 2 , and the tildes have been dropped. The usual
boundary conditions are either (i) fixed

w4Dw4u40 , z40, 1 ,(6)

or (ii) free boundary conditions

w4D 2 w4u40 , z40, 1 .(7)

Case (ii), which is simpler, was solved in part I [6]. It is case (i), which has pre-
viously eluded successful resolution, that will studied in this work. However, it
should be mentioned that when e40 and d40, H(z) f1 and N(z) f1, and it
is possible to show without much difficulty that if s4s 1 1 is 2 is complex, and
s 2 c0, then s 1 E0. This was the original idea of Pellew and Southwell [15].
However, in general, when H(z) and N(z) are independent variables, with no-
slip boundary conditions, the only results known are those of Davis [3]. It is
the purpose of this article to provide resolution to this problem. The method
employed here is also successful in the stability problem of Couette flow [7]. In
the next section, the now familiar technique is outlined. Then, in the succeed-
ing section the proof is carried out in several steps. The underlying operators
are described. Then a lemma for no-slip boundary conditions is introduced,
which is the main advance from part I. Finally, the PES is proved.

2. – Abstract formulation.

2.1. The method of positive operators.

The idea of the method of solution is based on the notion of a positive oper-
ator [9], [5], a generalization of a positive matrix, that is, one with all of its en-
tries positive. Such matrices have the property that they possess a single
greatest positive eigenvalue, identical to the spectral radius. To apply the
method, the resolvent of the linearized stability operator is analyzed. This re-
solvent is in the form of compositions of certain integral operators. When the
Green’s function kernels for these operators are all nonnegative, the resulting
operator is termed positive. The infinite dimensional counterpart of this prop-
erty is contained in the following theorem of Krein and Rutman.

THEOREM [13]. If a linear, compact operator A , leaving invariant a
cone 6 , has a point of the spectrum different from zero, then it has a positive
eigenvalue l , not less in modulus than every other eigenvalue, and to this
number corresponds at least one eigenvector f�6 of the operator A (Af4

4lf), and at least one eigenvector c�6* of the operator A *.



ISOM H. HERRON172

For this problem the cone consists of the set of nonnegative functions.
In the formulation (4) and (5) with the boundary conditions (6), it is possi-

ble to rewrite the equations in terms of certain operators

(M * M1sM) w2k 2 RH(z) u40 ,(8)

2RN(z) w1 (MA1Prs) u40 ,(9)

where

Mw4 (2D 2 1k 2 ) w»4mw , w�dom M ,

M * Mw4m 2 w , w�dom (M * M) ,

MAu4mu , u�dom MA .

The domains are contained in 3 , where

34L 2 (0 , 1 ) 4 {fN�
0

1

NfN2 dz}EQ ,

with scalar product

af , cb 4�
0

1

f(z) c(z) dz , f , c�3 ,

and norm

VfV4 af , fb1/2 .

The domains are given as follows

dom M *

dom M

dom MA

4 ]f�3Nf 8, mf�3( ,

4 ]f�dom M * Nf(0) 4f 8 (0) 4f(1) 4f 8 (1) 40( ,

4 ]f�dom M * Nf(0) 4f(1) 40( .

Then with the above definitions, it is not difficult to verify the following prop-
erties of the operators just defined. The estimates are not the sharpest possi-
ble, but they will do for our purposes.

REMARK 1. M is closed, symmetric, but not maximal and hence not in-
vertible. Moreover, M is positive definite, that is aMf , fb Fk 2

VfV

2 , f�
�dom M , kc0. The case k40 is excluded because stability is known to hold in
that case.
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REMARK 2. M * is the adjoint of M and has no boundary conditions. The
two-dimensional null space of M *, ker M *, has the basis

q(z) 4 u e kz

e 2kz
v .

REMARK 3. MA is a selfadjoint, positive definite extension of M . Further-
more, G(s) 4 (MA1s)21 exists for s�S k 4 ]s�CNRe (s) G2k 2 , Im(s) 40(,
and VG(s)V

21 DNs1k 2 N , for Re (s) D2k 2 [12, p. 272]. Explicitly, G(s) is the
integral operator such that for f�3 ,

G(s) f4 (MA1s)21 f4�
0

1

gA(z , j ; s) f (j) dj ,

where

gA(z , j ; s) 4
cosh [r (12Nz2jN) ]2cosh [r(211z1j) ]

2r sinh r
(10)

is the appropriate Green’s function and

r4kk 2 1s

is the branch of the square root which is positive for positive real num-
bers.

It is now possible to write the system as single equation in w . Eliminating
u from (9) it follows that

u4 (MA1Prs)21
RN(z) w4G(Prs) RN(z) w .

Similarly, in (8),

w4 (M * M1sM)21 k 2 RH(z) u4F(s) k 2 RH(z) u ,

where

F(s) 4 (M * M1sM)21 .

So substituting for u ,

w4k 2 R 2 F(s) H(z) G(Prs) N(z) w .

In a more compact form this equation is written as

w4K(s) w .(11)

This formal derivation of (11) will be justified in the next section.
What is to be studied in what follows is [I2K(s) ]21 . Suppose K(s) de-

pends analytically on s in a certain right half of the complex plane. Further-
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more, for all s 0 for which K(s) is defined,

[I2K(s) ]21 4 ]I2 [I2K(s 0 ) ]21 [K(s)2K(s 0 ) ](21 [I2K(s 0 ) ]21 .(12)

So, if for all real s 0 greater than some fixed constant a
(P1) [I2K(s 0 )]21 is positive,
(P2) K(s) has a power series about s 0 in (s 0 2s) with positive coefficients,

i.e. (2d/ds)n K(s 0 ) is positive for all n , then the right side of (12) has an ex-
pansion in (s 0 2s) with positive coefficients. Then, the methods of [18] and
[16] apply, showing that «there exists a real eigenvalue s 1 Ga such that the
spectrum of K(s) lies in the set ]sNRe (s) Gs 1 ( " . This is equivalent to PES.

To verify conditions (P1) and (P2), the structure of the operators G(Prs)
and F(s) will be examined. It is assumed that the product of the functions
H(z) N(z) F0 on [0 , 1 ].

3. – The principle of exchange of stabilities.

3.1. The underlying operators.

Condition (P1) is treated first. Each factor in K(s) is examined. Regarding
G(Prs) the following was proved in part I [6]:

LEMMA 1. The operator G(s) 4 (MA1s)21 is a positive operator for all re-
al sD2k 2. and G(s) has a power series expansion about s 0 in (s 02s) with po-

sitive expansion coefficients, i.e. g2 d

ds
hn

G(s 0 ) is positive for s 0 real , for all n.

The operator F(s) is not as easily analyzed. The approach to be taken in-
volves examining F(s) in terms of its factors. Use is made of the generalized
inverse [14] of M , denoted by M † . First, the projection operator Q onto the
ker M * is defined by

(Qc)(z) 4�
0

1

gQ (z , j) c(j) dj , c�H ,

where

gQ (z , j) 4qT (z) y �
0

1

q(s) qT (s) dsz21

q(j) .

Then g † , the generalized Green’s function satisfies

g2 ¯ 2

¯z 2
1k 2h g † (z , j) 4d(z2j)2gQ (z , j) ,

g † (0 , j) 4
¯

¯z
g † (0 , j) 4g † (1 , j) 4

¯

¯z
g † (1 , j) 40 ,
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so that

(M † f)(z) 4�
0

1

g † (z , j) f(j) dj .

Some properties of M † are

MM † 4I2Q ,(13)

M † M4I ,(14)

since ker M is trivial.

LEMMA 2. M † 4 MA21 (I2Q).

PROOF. Since MA is an invertible extension of M , MA21 M4I on dom M ,
therefore operating on (13) with MA21

MA21 MM † 4 MA21 (I2Q).

and

MA21 MM † 4IM † 4M † ,

so

M † 4 MA21 (I2Q) . r(15)

LEMMA 3. The only solution of (8)-(9) is the trivial solution when R40,
and s�S k for 0 EPrG1, or s�S k/kPr for PrD1.

PROOF. Suppose that R40, then (8)-(9) reduces to

(M * M1sM) w40 ,(16)

(MA1Prs) u40 .(17)

Taking the scalar product of (16) with w gives aM * Mw , wb 42saMw , wb,
or

2saMw , wb 4 aM * Mw , wb 4 aMw , Mwb 4

4VMwV

2 F aMw , wb2 /VwV

2 Fk 2 aMw , wb ,

by Remarks 1 and 2. Thus, s is real and sG2k 2 . Hence, when s�S k , w40
and this implies u40, by (17) and Remark 3, when PrG1. If PrD1, then by
Remark 3, u40, when s�S k/kPr . r
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3.2. A lemma for no-slip boundary conditions.

LEMMA 4. The operator L4 (M * M1sM) has an inverse, positive for all
real sD2k 2 . The inverse has a power series expansion about s 0 in powers of
s 0 2s with positive expansion coefficients.

PROOF. On the basis of the preceding lemma, conclude that L is invertible
for s�S k . Define

L 21 4F(s) 4 (M * M1sM)21 4 (M * M)21 (I1sB)21 ,(18)

where B4M(M * M)21 is a bounded operator. By Lemma 1, the expansion

G(s) 4G(s 0 )[I2 (s 0 2s)G(s 0 ) ]21 4

4G(s 0 )[I1 (s 0 2s) G(s 0 )1 (s 0 2s)2 (G(s 0 ) )2 1R]

is valid for Ns 0 2sNVG(s 0 )VE1. The coefficients are positive operators when
s 0 D2k 2. Analogously, by (18),

(M * M1sM)21 4 (M * M1s 0 M)21 [I2 (s 0 2s) M(M * M1s 0 M)21 ]21

so that

(19) F(s) 4F(s 0 )[I2 (s 0 2s) MF(s 0 ) ]21 4

4F(s 0 )[I1 (s 0 2s) MF(s 0 )1 (s 0 2s)2 (MF(s 0 ) )2 1R] ,

for Ns 0 2sNVMF(s 0 )VE1, s�S k , s 0 D2k 2. It is still necessary to establish
the positivity of the coefficients in the expansion for F(s). Observe, also from
(18), that

F(s 0 ) 4 (M * M)21 [I1 (2s 0 ) B1 (2s 0 )2 B 2 1R](20)

is defined for Ns 0NVBVE1. If it can be shown that the coefficients in the above
expansion (20) of F(s 0 ) in powers of (2s 0 ) are positive, then it follows that
F(s 0 ) is a positive operator for real s 0 in the interval 2k 2 Es 0 EVBV

21. Then
by a process of analytic continuation, which will be described, the positivity of
F(s 0 ) for all real s 0 D2k 2 will be proved.

The process thus begins to establish that F(s) in (19) has positive expan-
sion coefficients. This is done by re-examining the expansion of F(s 0 ) (20).
Define

S4I2Q ,
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the projection on the range of M , ran M . We have, from (15), that

M †*4 (MA21 S)*4SMA21 ,(21)

since MA21, Q , and hence S are selfadjoint. Thus we have the equivalent
factorizations

M † M †*4 MA21 SSMA21 4M † MA21 4 MA21 M †*4 MA21 SMA21 ,

since S is a projection. But, by definition of the generalized inverse,

M † M †*4 (M * M)† 4 (M * M)21 ,(22)

since M * M is invertible, being positive (definite) selfadjoint. Thus

B4M(M * M)21 4M †* ,(23)

and

VBV4VSMA21
VGVSVVMA21

V4VMA21
V ,(24)

since S is projection, VSV41. Then the expansion of F(s 0 ), (20) may be re-writ-
ten, using (23), as

(25) F(s 0 ) 4 (M * M)21 1 (2s 0 )(M * M)21 M(M * M)21 1

1(2s 0 )2 (M * M)21 (M(M * M)21 )2 1R

4 (M * M)21 1 (2s 0 )M † MA21 M †*1s 0
2 (M † M †*)(M †*)2 1R

By (15) and (21) it follows that

(26) F(s 0)4(M *M)211(2s 0) MA21SMA21SMA211s 0
2 MA21SMA21 (SMA21)21R

It is a well known result of the stability literature [8, Appendix D], [16,
p. 370], that MA21 has a nonnegative Green’s function kernel. However, even
more can be said ([10], [11]). Consider first order differential operators given by

(Dj W)(z)

(Dj* W)(z)

4
d

dz
rj (z) W(z),

4rj (z)
dW(z)

dz
, j41, 2 , R n ,

with strictly positive weights rj (z), j41, R n11, possessing 2n continuous
derivatives in [0 , 1 ]. The formal differential operators An and An* which can be
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written as

(An W)(z) 4Dn R D2 D1 W ,(27)

(An* W)(z) 4D1* D2* R Dn* W ,(28)

form factors of the even order differential operator

E2n 4 (21)n An* rn11 An .(29)

The appropriate boundary conditions for E2n might be: at the endpoint
z40,

(D2* D3* R Dn* rn11 Dn R D2 D1 W)(0)1 (21)n a1 W(0) 40,

(D3* D4* RDn* rn11 Dn RD2 D1 W)(0)1 (21)n11 a2 (D1 W)(0) 40,

QQ
Q

(rn11 Dn R D2 D1 W)(0)1 (21)2n21 an (Dn21 R D2 D1 W)(0) 40

(30)

and at the endpoint z41,

(D2* D3* R Dn* rn11 Dn R D2 D1 W)(1)1 (21)n11 b1 W(1) 40,

(D3* D4* R Dn* rn11 Dn R D2 D1 W)(1)1 (21)n12 b2 (D1 W)(1) 40,

QQ
Q

(rn11 Dn R D2 D1 W)(1)1 (21)2n bn (Dn21 R D2 D1 W)(1) 40

(31)

where

0 Gaj GQ , 0 Gbj GQ , j41, 2 , R , n

and for each j not both aj and bj are zero. (This restriction is to ensure that 0 is
not an eigenvalue of E2n . ) The value a1 4Q is interpreted as the boundary
condition W40; similarly a2 4Q as the boundary condition D1 W40, etc.
Then the Green’s function kernel of E2n , g 2n , is totally positive (TP). This
means that g 2n D0 on the interior of the square on which it is defined, and cer-
tain determinants of intermediate values are nonnegative. It is only the posi-
tivity characterization which is needed for the rest of this discussion. In par-
ticular, the formal differential operator m, which defines M * and all of its re-
strictions, has the factorization

mW42e 2kz d

dz
ke 2kz d

dz
e 2kz Wl »4E2 W .(32)

Thus it is known that the Green’s function kernel for MA21 is TP. Likewise
since (M * M)W4E2 E2 W»4E4 W, on dom (M * M), (M * M)21 has a TP Green’s



RAYLEIGH-BÉNARD CONVECTION, II 179

function kernel. It also follows that F(s 0 ) 4 (M * M1s 0 M)21 has a TP
Green’s function kernel for all real s 0 D2k 2 , since the corresponding formal
differential operator is m 2 1s 0 m4m(m1s 0 ), and (m1s 0 ) has the factor-
ization

2(m1s 0 ) W4e 2mz d

dz
ke 2mz d

dz
e 2mz Wl ,(33)

where m4ks 0 1k 2 . Together, (33) and (32) give that F(s 0 ) has a nonnegative
kernel, when s 0 is real, and s 0 D2k 2 . Hence, it is anticipated that the expan-
sion (26) contains the desired result.

Consider then the term of order 2s 0 in (26). This is an integral operator
defined on any function w�3 . That is, set

T4 MA21 SMA21 SMA21 .(34)

It will be shown that T has a nonnegative kernel. Let the kernel of T be called
h . We will write h as the sum of two kernels of form (29), that is, h4h1 1h2 ,
where as functions of z

hi (0) 4hi8 (0) 4hi (1) 4hi8 (1) 40, i41, 2 .(35)

Owing to the fact that h (and thereby T) represents the inverse of a sixth or-
der operator E6 , (29), two other boundary conditions must be imposed in order
to describe it. From the nature of T, these conditions are

�
0

1

e kz (2D 2 1k 2 )2 hdz40 and �
0

1

e 2kz (2D 2 1k 2 )2 hdz40.

After the integrals are performed and the conditions (35) are imposed the
other two conditions on h become

e k hR(1)2ke k h 9 (1)2hR(0)1kh 9 (0)

e 2k hR(1)1ke 2k h 9 (1)2hR(0)2kh 9 (0)

40 ,

40 .
(36)

However, these conditions are not of the form (30) and (31). In order to employ
the TP theory, search for such a decomposition, namely suppose that (n43,
r1 4e 2kz , r2 4e 2kz , r3 4e 22kz , r4 4e 2kz , then) suitable separated boundary
conditions are

(r4 D3 D2 D1 hi )(0)2ai (D2 D1 hi )(0) 40 and

(r4 D3 D2 D1 hi )(1)1bi (D2 D1 hi )(1) 40, i41, 2 .



ISOM H. HERRON180

Then with (35), these reduce to

hRi (0)2 (ai 1k) hi9 (0)

hRi (1)1 (bi 2k) hi9 (1)

40 , and

40 , i41, 2 .
(37)

The choice of constants ai F0 and bi F0 must be made so that given h4h1 1

1h2 , (37) are compatible with (36). Such a decomposition will not be unique, but
it can be done since (37) and (36) represent six homogeneous equations in the
eight unknown boundary values. This system is compatible for nontrivial sol-
utions as long as a1 ca2 and b1 cb2 . This means that T in (34) has a nonnega-
tive kernel, so it may be concluded T is a positive operator.

In a similar manner, the term of order s 0
2 in (26) is representable as

MA21 SMA21 SMA21 SMA21 .(38)

This is obtainable from a differential operator E8 , that is (29), with n44. For
the kernel of this operator perform a decomposition into two parts so that to
each (35) will apply. But now, not only do (36) apply as before, but a higher or-
der counterpart as well. Through expressions such as (37), it is possible find
suitable separated boundary conditions at higher orders as well. The net de-
composition is that the kernel for (38) is written as the sum of four nonnega-
tive kernels. This renders (38) as a positive operator. By this procedure, each
successive term in (26) is expressible as a sum of 2n22 positive operators for
n42, 3 , 4 , R respectively.

What has been shown is that the expansion (20) for F(s 0 ) converges for
Ns 0NVBV0 E1 and for s 0 real, it gives that the operator F(s 0 ) is positive for 2

2k 2 Es 0 EVBV

21. Perform another expansion about a real point s 1 D0, such
that s 0 Es 1 EVBV

21. By summing the series for F(s 1 ) find that from (19),

F(s 1 ) 4F(s 0 )[I1 (s 0 2s 1 ) MF(s 0 )1 (s 0 2s 1 )2 (MF(s 0 ) )2 1R] .(39)

It has already been established that F(s 0 ) has positive coefficients in powers
of (2s 0 ), when 2k 2 Es 0 EVBV

21, as in (20). By similar reasoning, it is ob-
served that F(s 1 ) has the same properties as F(s 0 ) since, for example, the sec-
ond coefficient F(s 0 ) MF(s 0 ) in (39) behaves like a typical factor in (25) when
expanded. By Remark 3, 2VG(0)V

21 42VMA21
V

21 E2k 2, and by (24), since
2VBV

21 G2VMA21
V

21 E2k 2, the region of positivity of F(s 1 ) lies inside the
region of analyticity given by (20). However, the only singularity on the edge
of the disc of convergence for (20), as is shown in the expression for F(s 1 )
given by (18), would occur where s 1 42VBV

21 , since F(s) has no singularities
off the real line. Thus it can be concluded using analytic continuation that F(s)
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may be written as

F(s) 4F(s 1 )[I1 (s 1 2s) MF(s 1 )1 (s 1 2s)2 (MF(s 1 ) )2 1R] ,(40)

where Ns2s 1NEs 1 1VBV

21. This disc goes outside the original disc NsNE

EVBV

21. The positivity is thus preserved for s 0 real and 2k 2 Es 0 E2s 1 1

1VBV

21. By a sequence of such discs, with singularities of (18) only at the (nega-
tive) eigenvalues of (16), any point in the half-plane Re (s) D2k 2 can be cov-
ered. The positivity of the limiting operator thus holds for all real s 0D2k 2.

Computing the derivative expansions of F(s) in (19), each term is of the

form (26), so that g2 d

ds
hn

F(s 0 ) is positive for all n and F(s) has a power

series expansion with nonnegative coefficients. r

3.3. Proof of PES.

With the aid of the last lemma, it is possible now to complete the abstract
analysis of the earlier formulation (11) and obtain the desired result.

The Principle of Exchange of Stabilities holds for (8)-(9), at all Prandtl
numbers, when the integrated internal heat sources N(z) and variable gravi-
ty ratio H(z) have the same sign throughout the layer.

PROOF. The system (8)-(9) may be written as the single equation suggest-
ed by (11),

u4K(s) u(41)

where

K(s) 4k 2 R 2 F(s) H(z) G(Prs) N(z) .

The resolvent is examined as defined in (12). It has been demonstrated that
the original system (8)-(9), and the transformed system (41), have spectra that
agree except on the set S k , when 0 EPrG1 or on the set S k/kPr when PrD1,
which in either case is a subset of the negative real half-line. We have shown in
Lemma 4 that F(s) is a positive operator, and that G(Prs) and F(s) have power
series expansions for real s 0 D2k 2 /Pr and s 0 D2k 2 , respectively.

To verify condition (P2), again note that it is assumed that H(z) N(z) F0,
while k 2 and R 2 are clearly positive. Therefore, by the product rule for differ-
entiation, one concludes that K(s) in (40) satisfies condition (P2).

It has been demonstrated that all of the terms in K(s) determine positive
operators. Moreover, for s real and sufficiently large, by Remark 3 and (18),
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the norms of the operators G(s) and F(s) become arbitrarily small. Hence,
VK(s)V will be less than 1. Then [I2K(s) ]21 has a convergent Neumann series
and hence is positive. This is the content of condition (P1). r
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