1. Let A be a set and x a number. Show that x is a limit point of A if and only if there exists a sequence x_1, x_2, \ldots of distinct points in A that converges to x.

Proof. Let $x = \lim_{n \to \infty} x_n$. Then for any $\varepsilon > 0$ so that $|x - x_k| < \varepsilon$ for $k > m$. Thus, for any $\varepsilon > 0$ there exists $k \in A$ so that $|x - x_k| < \varepsilon$, which means that x is a limit point (see Def. 3.2.1).

Let x be a limit point of A. By the definition, for any $\varepsilon = \frac{1}{n}$, there exists $y \neq x$ so that $|y - x| < \frac{1}{n}$. Let's call $y = x_n$. The sequence x_1, x_2, \ldots converges to x; there is a minor problem with it: the terms are not necessarily distinct. This flaw can be remedied by selecting a subsequence.

Set $x'_1 = x_1$. Take $E_1 = |x'_1 - x|$, and select $x'_2 = x_k$ where $|x_k - x| < E_1$. Then $x'_2 \neq x'_1$. Now take $E_2 = |x'_2 - x|$, and select x'_k so that $|x_k - x| < E_2$. Set $x'_3 = x'_k$, and so on.

2. Prove that $K = \bigcap_{n=1}^{m} K_n$ and $C = \bigcap_{n=1}^{m} K_n$ are compact if all K_n, K_2 are compact.

Proof: Since each K_n and K_2 is compact, it is bounded and closed (Thm 3.3.1). It means that any $k \in K_n$ lies between $a_n \leq k \leq b_n$.

Therefore \(K = \bigcup_{n=1}^{m} K_n \) lies between \(\min_{n=1}^{m} a_n \) and \(\max_{n=1}^{m} b_n \).

i.e. \(K \) is bounded. By Thm 3.2.3, \(K \) is closed. Therefore \(K \) is compact.

Similarly, \(C = \bigcap K_i \) is Any of them. Therefore \(C \) is bounded. Again, by Thm 3.2.3 \(C \) is closed.

3. If \(B_1, ..., B_n \) is a finite open cover of a compact set \(A \), can the union \(B_1 \cup ... \cup B_n \) equal \(A \) exactly.

This is a trivial problem: The union is open (Thm 3.2.1) and therefore cannot be equal to a compact set which must be closed.

Comment: The only sets which both open and closed are \(\emptyset \) and \(\mathbb{R} \). Thus a compact set can be open only if it is empty.