April 23

8.4 Annuities, Stocks and Bonds ---- Systematic Savings

Annuity = sequence of equal payments made at equal time periods
 i.e. depositing $1000 at the end of every year into an IRA

Value of an annuity = the sum of all the deposits plus all interest paid.

\[
A = P \left[\frac{(1 + r/n)^{nt} - 1}{(r/n)} \right]
\]

Where \(A \) = future value, \(P \) = deposit made at the end of each compounding period,
\(n \) = # of times compounded per year, \(t \) = # of years, \(r \) = annual interest rate
At age 25, to save for retirement, you decide to deposit $75 at the end of each month in an IRA that pays 6.5% interest compounded monthly.

a) How much $ will be in the IRA at age 65? 40 years later

\[A = \frac{75 \left[\left(1 + \frac{.065}{12} \right)^{12 \times 40} - 1 \right]}{\left(\frac{.065}{12} \right)} \]

\[= 75 \left[12.3696 \ldots \right] = \frac{971,271.42}{.005416} \]

b) How much of the $ in the IRA is interest?

Total amount deposited = \((75)(12)(40) = 36,000\)

\[\text{Interest} = 171,271 - 36,000 = 135,271 \]
You would like $4000 in 4 years for a special vacation. You make deposits every 6 months in an annuity that pays 7% compounding semi-annually.

a) How much (to the nearest $) should you deposit at the end of every 6 months to meet your goal?

\[
P = \frac{4000 \left(\frac{0.07}{2} \right)}{\left(1 + \left(\frac{0.07}{2} \right) \right)^{2(4)} - 1}
\]

\[
P = \frac{4000 \times 0.035}{0.316809...} = 441.906 \approx 442
\]

b) How much of the $4000 is deposits and how much is interest?

Total deposit amount = (442)(2)(4) = $3536

Interest = \[A - \text{total deposit}\]

\[= 4000 - 3536 = 464\]
Investments

Cash investments: bank, savings, CD

STOCKS - shares of ownership in a company

two ways to make $:

1. sell shares for more
 $ than you bought them < $ CAPITIAL GAIN (LOSS)

2. DIVIDENDS = company distribute profits to shareholders

BONDS - commitment by company to pay face value + interest on a "loan" to company
Reading Stock Tables

Daily newspapers and online services give current stock prices and other information about stocks.

- **52-week high** refers to the highest price at which a company traded during the past 52 weeks.
- **52-week low** refers to the lowest price at which a company traded during the past 52 weeks.
- **Stock** refers to the company name.
- **SYM** refers to the symbol the company uses for trading.
- **Div** refers to dividends paid per share to stockholders last year.
- **Yld%** stands for percent yield.
- **Vol100s** stands for sales volume in hundreds.
Reading Stock Tables

• **Hi** stands for the highest price at which the company’s stock traded yesterday.

• **Low** stands for the lowest price at which the company’s stock traded yesterday.

• **Close** stands for the price at which shares traded when the stock exchanged closed yesterday.

• **Net Chg** stands for net change.

• **PE** stands for the price-to-earnings ratio.

\[
PE \text{ ratio} = \frac{\text{Yesterday's closing price per share}}{\text{Annual earnings per share}}
\]
<table>
<thead>
<tr>
<th>52-week High</th>
<th>Low</th>
<th>Stock</th>
<th>SYM</th>
<th>Div</th>
<th>Yld %</th>
<th>PE</th>
<th>Vol 100s</th>
<th>Hi</th>
<th>Lo</th>
<th>Close</th>
<th>Net Chg</th>
</tr>
</thead>
<tbody>
<tr>
<td>42.38</td>
<td>22.50</td>
<td>Disney</td>
<td>DIS</td>
<td>.21</td>
<td>.6</td>
<td>43</td>
<td>115900</td>
<td>32.50</td>
<td>31.25</td>
<td>32.50</td>
<td>...</td>
</tr>
</tbody>
</table>

Dividend = \(\frac{.21}{100} \) or \(\frac{21}{1000} \) /share

If owned 1000 shares = get $210

\((.21 \times 1000) \)

Yesterday closed at same price as the day before
Annual earnings per share = \(\frac{\text{Yesterday's close}}{\text{PE ratio}}\)

= \(\frac{\$32.50}{43}\)

= \$0.76
Fixed Installment Loans -- (car, school, house)

A loan that has a schedule of paying a fixed amount each period for the entire term of the loan.

You need to be able to determine the Amount financed (cash price – down payment), the total installment price (monthly payments + down payment), and the finance charge (the total installment price – cash price).

A new car costs $14000. You finance the car by paying $280 down and $315 per month for 60 months.

a) What is the amount financed?

$14000 - $280 = $13720

b) What is the total installment price?

$60(315) + $280 = $19,180

c) What is the finance charge?

$19,180 - $14000 = $5,180
So what interest rate did you pay?

1) Compute the finance charge per $100

\[
\text{Finance charge} \times 100 = \frac{5180}{13720}. 100 = \$37.76
\]

2) Look in Table: find row for # payments and find dollar amount closest to answer above.

TABLE 8.3 ANNUAL PERCENTAGE RATE (APR) FOR MONTHLY PAYMENT LOANS

<table>
<thead>
<tr>
<th>Number of Monthly Payments</th>
<th>10.0%</th>
<th>10.5%</th>
<th>11.0%</th>
<th>11.5%</th>
<th>12.0%</th>
<th>12.5%</th>
<th>13.0%</th>
<th>13.5%</th>
<th>14.0%</th>
<th>14.5%</th>
<th>15.0%</th>
<th>15.5%</th>
<th>16.0%</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Finance charge per $100 of amount financed)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>$2.94</td>
<td>$3.08</td>
<td>$3.23</td>
<td>$3.38</td>
<td>$3.53</td>
<td>$3.68</td>
<td>$3.83</td>
<td>$3.97</td>
<td>$4.12</td>
<td>$4.27</td>
<td>$4.42</td>
<td>$4.57</td>
<td>$4.72</td>
</tr>
<tr>
<td>12</td>
<td>5.50</td>
<td>5.78</td>
<td>6.06</td>
<td>6.34</td>
<td>6.62</td>
<td>6.90</td>
<td>7.18</td>
<td>7.46</td>
<td>7.74</td>
<td>8.03</td>
<td>8.31</td>
<td>8.59</td>
<td>8.88</td>
</tr>
<tr>
<td>48</td>
<td>21.74</td>
<td>22.90</td>
<td>24.06</td>
<td>25.23</td>
<td>26.40</td>
<td>27.58</td>
<td>28.77</td>
<td>29.97</td>
<td>31.17</td>
<td>32.37</td>
<td>33.59</td>
<td>34.81</td>
<td>36.03</td>
</tr>
<tr>
<td>60</td>
<td>27.48</td>
<td>28.96</td>
<td>30.45</td>
<td>31.96</td>
<td>33.47</td>
<td>34.99</td>
<td>36.52</td>
<td>38.06</td>
<td>39.61</td>
<td>41.17</td>
<td>42.74</td>
<td>44.32</td>
<td>45.91</td>
</tr>
</tbody>
</table>
Some fixed loans can be paid off early with no penalty ... this reduces the interest you pay (unearned interest)

METHODS FOR COMPUTING UNEARNED INTEREST

Unearned interest is the amount by which a loan’s finance charge is reduced when the loan is paid off early.

Actuarial Method

\[
\begin{align*}
 u &= \frac{kRV}{100 + V} \\
 u &= \text{unearned interest} \\
 k &= \text{remaining number of scheduled payments (excluding current payment)} \\
 R &= \text{regular monthly payment} \\
 V &= \text{finance charge per$100 (from the APR table) for a loan with the same APR and } k \text{ monthly payments}
\end{align*}
\]

Rule of 78

\[
\begin{align*}
 u &= \frac{k(k + 1)}{n(n + 1)} \times F \\
 u &= \text{unearned interest} \\
 k &= \text{remaining number of scheduled payments (excluding current payment)} \\
 n &= \text{original number of payments} \\
 F &= \text{original finance charge}
\end{align*}
\]
Back to our car example: $280 down, $315 per month for 60 months.

You decide to pay off car at the 24th payment.

a) Use the actuarial method to determine interest saved

\[
u = \frac{k R V}{100 + \sqrt{v}}
\]

\[
= \frac{36(315)(22.17)}{122.17}
\]

\[
= \$2057.85 \quad \text{interest saved}
\]

b) What is the payoff amount?

\[
\text{payoff amount} = (\text{payment #24}) + (\text{Total remaining payments after 24})
\]

\[
= \$315 + (36)(\$315) - \frac{\text{Interest Saved}}{2057.85}
\]

\[
= \$9567.15
\]
Back to our car example: $280 down, $315 per month for 60 months.

You decide to pay off car at the 24th payment.

a) Use the Rule of 78 to determine interest saved

\[
I = \frac{k(k+1)}{n(n+1)} \times F
\]

\[
= \frac{36(37)}{60(61)} \times 5180 \approx 1885.18
\]

b) What is the payoff amount?

\[
315 + 36(315) - 1885.18 = \boxed{9769.82}
\]
Open-end Installment Loans --- Credit Cards --- revolving credit

Interest is computed using the Simple Interest Formula

\[I = Prt \]

where \(r \) is the **monthly** interest rate!

Three methods to calculate monthly interest:

For all three methods, \(I = Prt \), where \(r \) is the monthly rate and \(t \) is one month.

Unpaid balance method: The principal, \(P \), is the balance on the first day of the billing period less payments and credits.

Previous balance method: The principal, \(P \), is the unpaid balance on the first day of the billing period.

Average daily balance method: The principle, \(P \), is the *average daily balance*. This is determined by adding the unpaid balances for each day in the billing period and dividing by the number of days in the billing period.
A credit card has a monthly rate of 1.8% (the APR is $1.8 \times 12 = 21.6\%$). The January 1 – January 31 itemized billing is as follows:

- **January 1**: unpaid balance of $6800
- **January 8**: payment of $500 received

No purchases or cash advances were made.

Payment due date is February 9.

Unpaid balance: $I = Prt$
$I = (6800 - 500) (0.018)(1) = 113.40$

Previous balance: $I = Prt$
$I = (6800)(0.018)(1) = 122.40$

Avg daily balance: $P = \frac{6800 (7) + 6300 (24)}{31} = 6412.90$

$I = (6412.90)(0.018)(1) = 115.43$
Discuss Amortization – payments for fixed loans (car/home) divided between interest and principal and proportion to each changes during the life of the loan.

Chap 8.6 - specifically amortization of home loans