1. Determine whether the set of vectors

\[\begin{align*}
\mathbf{x}^{(1)}(t) &= \begin{pmatrix} 2e^{2t} \\ 2e^{2t} \\ 0 \end{pmatrix}, \\
\mathbf{x}^{(2)}(t) &= \begin{pmatrix} e^{2t} \\ -2e^{2t} \\ e^{2t} \end{pmatrix}, \\
\mathbf{x}^{(3)}(t) &= \begin{pmatrix} e^{2t} \\ 3e^{2t} \\ -e^{2t} \end{pmatrix}
\end{align*} \]

is linearly dependent for \(-\infty < t < \infty\). If so, find the linear relation among them. Justify your conclusion.

2. Consider \(\mathbf{x}^{(2)}(t) = \begin{pmatrix} 2 \\ t \end{pmatrix}, \mathbf{x}^{(2)}(t) = \begin{pmatrix} t \end{pmatrix} \).

(a) Compute the Wronskian of \(\mathbf{x}^{(1)} \) and \(\mathbf{x}^{(2)} \).
(b) For what values \(t = t_0 \) are the constant vector \(\mathbf{x}^{(2)}(t_0) \) and \(\mathbf{x}^{(2)}(t_0) \) linearly independent?
(c) In what interval(s) are \(\mathbf{x}^{(1)}(t) \) and \(\mathbf{x}^{(2)}(t) \) linearly independent?
(d) What conclusions can you draw about the coefficients in the system of linear homogeneous DE's satisfied by \(\mathbf{x}^{(1)}(t) \) and \(\mathbf{x}^{(2)}(t) \)?
(e) Find the system of equations and verify the conclusions of part (d).

[SEE Prob. 6 & 7, p. 369, FOR SIMILAR PROBLEMS]

3. Consider the nonhomogeneous linear system

\[\begin{align*}
\frac{d}{dt} \begin{pmatrix} x \\ y \end{pmatrix} &= \begin{pmatrix} 4 & 5 \\ -5 & -4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} -2 \\ 7 \end{pmatrix} \\
(\ast)
\end{align*} \]

(a) Find the unique critical point of \((\ast)\) and determine its type and stability.

[If the c.p. is \((x_0, y_0)\), make the substitution \(x = u + x_0, \ y = v + y_0 \) to transform \((\ast)\) into a linear homogeneous system. Then solve.]
(b) Sketch several trajectories of \((\ast)\) in the \(x, y\)-plane.
(c) Given the expressions for \(u(t)\) and \(v(t)\), find the general solution \(x(t), y(t)\) of system \((\ast)\). AN EQUIVALENT PROCEDURE FOR SOLVING \((\ast)\)
4. Consider the nonlinear autonomous system

\[x' = x(3 - x - y), \quad y' = y(-2 - y + x) \quad (**) \]

(a) Find all equilibrium solutions (critical points).
(b) There is one c.p. for which \(x \) and \(y \) are both positive. For this c.p., find the linear system of differential equations that approximates (**) near this point.
(c) With respect to the linearized system found in (b), determine the type & stability of the c.p.
(d) With respect to the nonlinear system (**) what are the type and stability of the c.p.? Explain.
(e) Sketch a few trajectories near this c.p. in the \(x,y \)-plane.

\[\text{DUE: Thursday, 4/20 by noon in Leslie's mailbox.} \]