Directions. Please submit your answer to the following problem in a \LaTeX-
prepared document. Class participants are encouraged to prepare solutions
in a collaborative mode but to prepare their to-be-submitted write-ups in-
dividually. The consequences of sharing files, electronic or otherwise, are
discussed in the course syllabus.\footnote{If the wording of this problem was discussed in detail in the classroom, the course
instructor expects to see similar phrases and sentences in reading the submissions.}

Please include the problem number along with a statement of the problem
in your submission. Please also include your e-mail address.

Recall that a point x in a metric space, M, is a limit point of a subset S
of M, if every open ball containing x contains an infinite number of points
of S. (This is equivalent to the definition of a limit point given in the Notes.)

Problem. Prove that an infinite subset of a compact metric space has at
least one limit point.