Stack Complementarity

\[
\begin{align*}
\text{min} & \quad c^T z \\
\text{s.t.} & \quad Ax = b \quad (P) \quad \text{max} & \quad b^T y \\
& \quad x \geq 0 \\
& \quad \text{min} & \quad A^T y + s = c \quad (D) \\
& \quad s \geq 0.
\end{align*}
\]

Let \(\mathcal{P} \) be the set of optimal solutions to (P)

\[\mathcal{P} = \text{set of optimal solutions to (P)} \]

\[\mathcal{D} = \text{set of optimal solutions to (D)} \]

Either \(\mathcal{P} \) and \(\mathcal{D} \) are both nonempty or they are both empty.

Proof: 4 cases:

(i) \((P) \) and \((D) \) have some finite optimal value. Then \(\mathcal{P} \) and \(\mathcal{D} \) are both nonempty.

(ii) \((P) \) has unbounded optimal value, \((D) \) is infeasible. Then both \(\mathcal{P} \) and \(\mathcal{D} \) are empty.

(iii) \((D) \) has unbounded optimal value, \((P) \) is infeasible. Then both \(\mathcal{P} \) and \(\mathcal{D} \) are empty.

(iv) Both \((P) \) and \((D) \) infeasible. Then both \(\mathcal{P} \) and \(\mathcal{D} \) are empty.
A strictly feasible point for \((P)\) is \(\bar{x} > 0\) with \(A\bar{x} = b\).

A strictly feasible point for \((\bar{D})\) is \((\bar{y}, \bar{s})\) with \(\bar{s} > 0\) and \(A^T\bar{y} + \bar{s} = \bar{c}\).

Lemma: Suppose the primal and dual problems are feasible.

1. If the dual problem has a strictly feasible solution then \(\bar{D}\) is convex and bounded.
2. If \((P)\) has a strictly feasible solution then \(\bar{D}\) is convex and bounded.

Proof: See second, leave last as exercise:

Assume \((P)\) has a strictly feasible solution \(\bar{x}\).

Let \(z^*\) be the optimal value.

For any \(s^*\) in \(\mathbb{R}_+^n\) with corresponding \(y^*\), we have:

\[\bar{x}^T s^* = x^T (c - A^T y^*) = c^T \bar{x} - (A\bar{x})^T y^* = c^T \bar{x} - b^T y^* = c^T \bar{x} - z^*.\]

Since \(\bar{x} > 0\), we have

\[0 \leq s_i^* \leq \frac{c^T \bar{x} - z^*}{\bar{x}_i}\]

so \(\Omega_s\) is bounded.

Note: Converse is also true. (dual version of the theorem.)
Let \((x^*, y^*, s^*)\) be an optimal solution.

From complementary slackness, we have for each \(i\), \(x_i^* = 0\) and/or \(s_i^* = 0\).

Define \(B = \{i : x_i^* \neq 0 \text{ for some } x \in \mathcal{D}\}\)

and \(N = \{i : s_i^* \neq 0 \text{ for some } (y, s^*) \in \mathcal{D}\}\).

Example (i) \(B\) could be just the basic variables:

\[
\begin{align*}
\min & \quad 3x_1 + x_2 \\
\text{st.} & \quad x_1 + x_2 = 1 \\
& \quad x_i \geq 0
\end{align*}
\]

\[\text{new } B \uparrow y_1, \quad s_2\]

Unique optimal soln is \((0, 1, 1, 0)\),

\[x^* = (0, 1), \quad y^* = 1, \quad s^* = (2, 0)\]

So, \(B = \{2\}, \quad N = \emptyset\).
(ii) B can be smaller than any basic variables:

\[\begin{align*}
\min & \quad -x_1 + x_3 \\
\text{s.t.} & \quad x_1 + x_2 + x_3 = 1 \\
& \quad x_1 + x_4 = 1 \\
& \quad x_1 \geq 0
\end{align*} \] (P)

\[\begin{align*}
\max & \quad y_1 + y_3 \\
\text{s.t.} & \quad y_1 + y_2 + s_1 = -1 \\
& \quad y_1 + s_2 = 1 \\
& \quad y_1 + s_3 = 0 \\
& \quad s_i \geq 0
\end{align*} \] (Q)

Unique optimal soln to (P), $x^* = (1, 0, 0, 0)$, so $\mathcal{B} = \{1\}$.

Optimal face.

Optimal solns are:

\[
\begin{align*}
\mathbf{y}^* = (0, 0), & \quad \mathbf{s}^* = (0, 1, 1, 0), \\
\mathbf{y}^* = (0, -1), & \quad \mathbf{s}^* = (0, 2, 0, 1)
\end{align*}
\]

and any convex combination:

\[
\begin{align*}
\mathbf{y}^* = (-\lambda, \lambda - 1), & \quad \mathbf{s}^* = (0, 2 - \lambda, \lambda, 1 - \lambda) \\
\text{for} & \quad 0 \leq \lambda \leq 1.
\end{align*}
\]

So $\mathcal{N} = \{2, 3, 4\}$.

Note that $\mathbf{B} \cup \mathcal{N} = \{1, 2, 3, 4\}$, i.e., all the indices.
(iii) B could be bigger than any basic set. We consider

\[\max \quad y, \]
\[\text{st.} \quad y_1 + s_1 = 1 \]
\[y_1 + s_2 = 1 \]
\[y_2 + s_3 = 0 \]
\[s_i \geq 0. \]

Optimal primal solution are

\[x^* = (\lambda, 1-\lambda, 0) \text{ for any } \lambda \in [0, 1], \]

so, \[B = \{1, 2\}. \]

Optimal dual solution is \[y_1^* = 1, \quad s^* = (0, 0, 1), \] so, \[\lambda \in \{3\}. \]

Again, \[B \cup N = \{1, 2, 3\}, \] all the variables.
(iv) Could have both primal & dual multiple optimal solutions.

N:

\[2x_1 + 3x_2 + x_3 = 4 \]
\[2x_1 + x_2 + 3x_3 - x_5 = 4 \]
\[x_1 + x_2 + x_3 - x_6 = 2 \]
\[x_6 \geq 0 \]

Optimal set: all three planes intersect.

N:

\[y^* = x(\frac{1}{3}, \frac{1}{3}, 0) + (1-x)(0, 0, 1) \]

\[5x = x(0, 0, 0, \frac{1}{3}, \frac{1}{3}, 0) + (1-x)(0, 0, 0, 0, 0, 1) \]

N: \(\{4, 5, 6\} \)
Lemma \(B \cap B^c \cap N = \emptyset \).

Proof. Follow immediately by complementary slackness.

If \(x_i > 0 \) then must have \(\pi^*_i = 0 \), any dual optimal rule.

So \(i \in B \) and \(i \notin N \).

\[\square \]

Theorem (Goldman-Tucker)

\(B \cup N = \{1, 2, \ldots, n\} \). Thus, there exist at least one primal solution \(x^* \in \mathbb{R}_+^n \) and one dual solution \((\mathbf{y}^*, \mathbf{s}^*) \in \mathbb{R}_+^m \times \mathbb{R}_+^n \).

Let \(F \) be the column \(\{1, 2, \ldots, n\} \setminus N \). Neither \(B \cup F \).

Let \(i \in F \). Consider the system:

\[\begin{align*}
A_i^T \mathbf{w} &< 0 \\
(A_i^T)^\text{adj of } A &> 0 \\
-A_j^T \mathbf{w} &< 0 & j \in F \setminus \{i\} \\
A_B^T \mathbf{w} &> 0 & \text{when } A_B \text{ are only even } \& B.
\end{align*} \tag{I} \]

This system has a solution if and only if the following system does not have a solution:

\[\begin{align*}
-\sum_{j \in F \setminus \{i\}} A_j^T \mu_j + A_B^T \mathbf{z} &= A_i \\
\mu_j &> 0, \quad \text{a price}
\end{align*} \tag{II} \] (No proof, similar)

\[\text{to Farkas.} \]

Since \(i \in F \), we have \(x_i^* = 0 \) and \(s_i^* = 0 \) in every optimal solution.
Assume (I) holds.

Let x^* be a dual solution with $s_i^* > 0 \text{ for } i \in N^-$
(E.g., s_i^* is average of N^- peaks, where $s_i > 0$ is least one for each peak; for each $i \in N^-$.

Let y^* correspond to x^*, so $A^T y^* + s^* = 0$.

Let $z_i = y_i^*$ be a solution to (I).

Then, $y^* + z^* = 0$ is feasible, at least for ϵ small and positive.

Let $\bar{s} = A^T(y^* + \epsilon z^*)$.

Note that $A_{N^-}^T(y^* + \epsilon z^*) = A_{N^-} y^*$, so $\bar{s} = 0$ still.

Thus, $B^T x^* = 0$ for any optimal x^*, so \bar{s} is optimal.

Also, $\bar{s} > 0$, so $i \in N^-$.

Assume (II) holds.

Let x^*, y^* solve (II), let x^* be optimal with $x_i^* > 0$.

Let $x_{N^-} = x_{N^-} + \epsilon z^*$, $x_{N^-} = x_{N^-}$, $\bar{x} = x$, $\bar{x}_i = \epsilon$, $\bar{x}_j = y_j$, for $j \in N \setminus N^-$. Then x is feasible for ϵ small enough, and since $s_{N^-} = 0$ and $s_i > 0 \text{ for } i \in N$, we have that $i \in B$. \bar{x}
Lemma. Suppose there exist strictly feasible solutions for both (P) and (O).

Then, for any \(K \geq 0 \), the set

\[\{ (x, s) : (x, y, s) \text{ is feasible and } x^Ts \leq K \} \]

is bounded.

Proof. Let \((x, y, s)\) be a strictly feasible solution.

Let \((x, s)\) be feasible with \(x^Tc \leq K \).

Now,

\[(x - \bar{x})^T(s - \bar{s}) = (x - \bar{x})^TA^T(y - \bar{y}) \]
\[= (Ax - A\bar{x})^T(y - \bar{y}) \]
\[= 0 \quad \text{since } Ax = A\bar{x} = b. \]

Hence,

\[0 = x^Ts - \bar{x}^Ts - \bar{x}^Ts + \bar{s}^Tx \]
\[\Rightarrow \bar{x}^Ts + \bar{s}^Tx = x^Ts - \bar{x}^Ts \leq K + \bar{s}^Tx. \]

Now, \(\bar{x} > 0 \) and \(\bar{s} > 0 \).

So, \(0 \leq \bar{s} \leq K + \bar{s}^Tx \) and \(0 \leq \bar{x} \leq K + \bar{s}^Tx \).

Corollary. If the set of optimal solutions to (P) (or (O)) is unbounded,

then (P) (or (O)) does not have a strictly feasible solution.

Proof. Directly from Lemma. Alternatively: \[d \geq 0, d \neq 0 \text{ and } x^Td, c^Td = 0. \] Let \(y, x, s \) such \(A^Ty + s = 0, c^Tx = 0. \)
This problem is a linear programming problem.

Optimality conditions for

\[\max \ c^T x \]
\[Ax = b \quad (I) \]
\[x \geq 0 \quad \text{or} \quad A^T y + s = c \quad (II) \]
\[y, s \geq 0 \]

can be written:

\[
\begin{bmatrix}
0 & A^T & I \\
A & 0 & 0 \\
S & 0 & X
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
s
\end{bmatrix}
= \begin{bmatrix}
0 \\
b \\
0
\end{bmatrix}
\]

\[x, s \geq 0 \]

where \(X = \begin{bmatrix} x_1 & \cdots & x_n \end{bmatrix} \), \(S = \begin{bmatrix} s_1 & \cdots & s_n \end{bmatrix} \)

This is a nonlinear system of equations.
Can define a direction by using a Newton step:

\[
\begin{bmatrix}
0 & A^T & I
\end{bmatrix}
\begin{bmatrix}
\Delta x \\
\Delta y \\
\Delta s
\end{bmatrix} =
\begin{bmatrix}
0 \\
0 \\
-5\times
\end{bmatrix}
\]

Note: we assume primal and dual feasibility, and strict feasibility, i.e., \(Ax = b, x > 0, A^Ty + s = c, s > 0 \).

Let \(\mathcal{F}^0 = \mathcal{F}(x, y, s) : Ax = b, x > 0, A^Ty + s = c, s > 0 \).

Primal-dual method, then, the search direction toward the center, in order to be able to take a larger step.

They keep the \(x \) and \(s \) away from the boundary, \(x \geq 0, s \geq 0 \).
Central part conditions:

\[A^T x + s = c \]
\[A x = b \]
\[x \geq s = 1 \]
\[c = (\ldots, a) \]
\[(x, s) > 0. \]

For each \(t > 0 \), the solution to the system defines a point on the central part. Denote this point by \(T \).
Most powerful dual algorithms take Newton steps towards points on C with $t > 0$, rather than solving for a point on C.

More target points when it comes near close.
Duality gap:
\[c^T x - b^T y = (A^T y + s)^T x - (A x)^T y \]
\[= s^T x + y^T A x - y^T A x \]
\[= s^T x. \]

Define the duality measure \(m = \frac{x_i^T s}{n} = \frac{1}{n} \sum x_i s. \)

Define the centring parameters \(\bar{c}, \bar{c} \in [0, 1]. \)

General step equation:
\[
\begin{bmatrix}
0 & A^T & I \\
A & 0 & 0 \\
S & 0 & x
\end{bmatrix}
\begin{bmatrix}
\bar{c} x \\
\bar{c} y \\
\bar{c} s
\end{bmatrix} =
\begin{bmatrix}
0 \\
0 \\
-x S e + \bar{c} m e
\end{bmatrix}
\]

Taking \(\bar{c} = 0 \) gives back the earlier system, and gives the affine scaling direction.

Taking \(\bar{c} = 1 \) gives the centring direction. This is

The direction obtained if we try to quote solve the system of

where the root of the central point with \(z = m \).
Algorithm

Pinheir's dual framework

Given \((x^0, y^0, s^0) \in \mathbb{F}_0\).

For \(k = 0, 1, 2, \ldots\)

Solve

\[
\begin{bmatrix}
0 & A^T & I \\
A & 0 & 0 \\
S^u & 0 & x^0 \\
S^l & 0 & x^0 \\
\end{bmatrix}
\begin{bmatrix}
\delta x^k \\
\delta y^k \\
\delta s^k \\
\end{bmatrix} =
\begin{bmatrix}
0 \\
0 \\
-x^k s^k + c^u s^k \\
-x^k s^k + c^u s^k \\
\end{bmatrix}
\]

where \(s^0 \in [0, 1]\) and \(\mu_k = \frac{(x^0)^T s^0}{n}\).

Set

\[
(x^{k+1}, y^{k+1}, s^{k+1}) \leftarrow (x^k, y^k, s^k) + \alpha_k (\delta x^k, \delta y^k, \delta s^k)
\]

choosing \(\alpha_k\) so that \((x^{k+1}, y^{k+1}, s^{k+1}) > 0\).

end for
Lemma: If A is tall and full rank and if $x > 0, s > 0$ then

$$\begin{bmatrix} 0 & A^T & I \\ A & 0 & 0 \\ S & 0 & x \end{bmatrix}$$

is a square invertible matrix.

And A^{-1} has

Block row below:

$$\begin{bmatrix} 0 & A^T & I \\ A & 0 & 0 \\ S & 0 & x \end{bmatrix} \xrightarrow{B_3 -XB_1} \begin{bmatrix} 0 & A^T & I \\ A & 0 & 0 \\ S & -XA^T & 0 \end{bmatrix}$$

$$\xrightarrow{B_2 -AS^{-1}B_3} \begin{bmatrix} 0 & A^T & I \\ 0 & AS^{-1}XA^T & 0 \\ S & -XA^T & 0 \end{bmatrix}$$

Look at $AS^{-1}XA^T$:

\[
\begin{bmatrix} & & \\
& & \\
& & \\
\end{bmatrix}
\]

Invertible by assumption. So we can find y. Can be found by and σ

\[\]
Other stuff to discuss

1) Expand on the lemma on page 99, to get \(d_1 = d_5 = 0 \).

2) Can handle infeasible starting points.

3) Extending to other convex problems. (Complementary equation is different).

4) Superlinear convergence.

5) Interior function relaxation method.

6) Mehrota predictor-corrector.
 Dynamic selection of \(T \) based on progress available with the affine direction.
Convergent Process (Watten, C1913)

String table data

A, b, c. A is mma.

If all entries integer: requires \(\lceil \log_2 |a| \rceil + 1 \) bit to store an integer a.

If all entries real:

multiply through by least common denominator.

So can exam have integer data.

Need also to indicate where each number starts and stops.

So total space required is

\[L = L_0 + (m + m_1) \]

where

- \(L_0 \) is number of entries
- \(m \) space to store the numbers themselves.

Natural Number Model

Will work with reals. \(+, -, \div, \times \) all present reals, as do native version of these.

When we need a square root, we can approximate it closely, enough by a rational in this course.

Stated result: Since a solution is bounded by a poly in sin of original data,
Lemma. When the problem data are integers, with length L, the vertices of the primal and dual feasible polytopes defined by

$$\{ x | A x = b, x \geq 0 \}, \\ \{ y, s | A^T y + s = c, s \geq 0 \}$$

are rational. Moreover, the nonzero components of x and s for these vertices are bounded below by 2^{-L}. \textit{Proof. See text.}17

Corollary. (P(k,l)) have unimodular optimum value if

$$c^Tx - b^Ty < 2^{-(L+1)}$$

then the optimum value x and (y,s) is optimal, provided (x,y,s) is feasible.

Let (x^*, y^*, s^*) be optimal.

Then $x^* s^* = c^T x^* - b^T y^*$.

Corollary. Any non-optimal vertex pair (x,y,s) has objective value at least 2^{-2L}.

Proof. If x since (x,y,s) is non-optimal, it violates complementary slackness.

Thus, for some component i, $x_i \geq 2^{-L}$ and $s_i \geq 2^{-L}$. So dually $y_i s_i \geq 2^{-2L}$. 17
Polynomials, Strongly Polynomial Algorithms

A polynomial algorithm has runtime that depends polynomially on the size of the problem.

E.g.: \(57^n^3 \).

An algorithm is strongly polynomial if the number of arithmetical operations it performs is polynomial in the dimension of the problem, independent of the size of the individual entries.

E.g.: Todd's algo. for LP poly in entries in \(A \) allow, not dependent on \(B, c \).

From this work:

If \(f(n) = O(g(n)) \) then there exists a constant \(c \) such that \(|f(n)| \leq cg(n) \) for all \(n \geq k \).

If \(f(n) = o(g(n)) \) then \(\frac{f(n)}{g(n)} \to 0 \) as \(n \to \infty \).
Let \(\epsilon \in (0,1) \) be given.

Let \(\mu = \frac{x^5}{n} \).

Assume our algorithm generates a sequence of feasible iterate satisfying

\[
\mu_{k+1} \leq \left(1 - \frac{\epsilon}{\omega} \right) \mu_k, \quad k = 0, 1, 2, \ldots
\]

for some positive constants \(\epsilon \) and \(\omega \). Suppose the starting point \((x^0, y^0, z^0)\) satisfies\(\mu_0 \leq \frac{1}{\epsilon^p}, \)

for some positive constant \(p \). Then there exist a value \(K \)

\[
K = O(\sqrt[p]{\log \frac{1}{\epsilon}}),
\]

such that

\[
\mu_k \leq \epsilon \quad \text{for all } k \geq K.
\]

We have

\[
\log(\mu_{k+1}) \leq \log\left(1 - \frac{\epsilon}{\omega}\right) + \log \mu_k
\]

\[
\leq (k+1) \log\left(1 - \frac{\epsilon}{\omega}\right) + \log \mu_0
\]

\[
\leq (k+1) \log\left(1 - \frac{\epsilon}{\omega}\right) + \frac{1}{p} \log\left(\frac{1}{\epsilon}\right)
\]
We have:

\[\ln(1 + \beta) \leq \beta \] for all \(\beta \geq 1 \).

Then,

\[(k+1) \left(\frac{-\sigma}{\sqrt{n}} \right) + \Theta_p(\log \frac{1}{n}) \leq \log \epsilon \]

so

\[(k+1) \left(\frac{-\sigma}{\sqrt{n}} \right) \leq (k+1) \log \frac{1}{n} \]

Therefore,

\[k_{\alpha} \leq 3 \] if

\[(k+1) \frac{\sigma}{\sqrt{n}} \geq (k+1) \log \frac{1}{n} \]

Thus,

\[\mu_n \leq \epsilon \] for all \(n \geq N = n \log_3 \frac{p+1}{\sigma} \]
Will see:
Short-term pert. following methods use $w = \frac{1}{2}$, only need one main step to update p_k.
Long-term pert. following methods use $w = 0$, may need several inner steps to update p_k.

Algorithm will use neighborhoods:

$N(0, \varepsilon) \subseteq \mathbb{R}^3$ feasible:
$E_j = \sum_{i=1}^{N} x_i - \mu e_i^2 \leq \Theta \mu^3$

$N_{\infty} (y) = \mathbb{F}(x, y, t) \text{ feasible: } x_i \leq y \mu \text{ for } i = 1, 2, \ldots, N$.
Interior Point Methods

Affine Methods

Rescale problem and go in direction of steepest descent.

\[
\text{min } \mathbf{c}^T \mathbf{x} \\
\mathbf{A} \mathbf{x} = \mathbf{b} \\
\mathbf{x} \geq 0.
\]

- Normally: Have initial point \(x^0 > 0 \).
- Move in steepest descent direction.
- Cook inside taking shortest length.
- \(\mathbf{c} \) rescale so all coefficients differ.

Now can take longer.
Algebraically:

\[
\min_{x \geq 0} c^T x \\
\text{s.t. } A x = b \\
X^o \geq 0 \\
x^o i
\]

Have feasible point \(x^o > 0 \), \(x^o = \left[\begin{array}{c} x_i^o \\ \vdots \\ x_n^o \end{array} \right] \)

Construct diagonal \(X^o = \left[\begin{array}{c} x_i^o \\ \vdots \\ x_n^o \end{array} \right] \).

Let \(e = \left[\begin{array}{c} 1 \\ \vdots \\ 1 \end{array} \right] \). Then \(X^o e = x^o \) so \(A X^o e = b \) and \((X^o c)^T e = c^T x \).

So consider the problem \(\min_{x \geq 0} \frac{c^T x}{x^T X^o} \leq \frac{c^T x}{x_i^o} \), \(\text{s.t. } A X^o x = b \).

where \(c = X^o c \), \(A = A X^o \).

\(e \) is feasible in \(\left(P \right) \), \(c^T e = c^T x \).

If \(\bar{x} \) is feasible in \(\left(P \right) \), then \(A X^o \bar{x} = b \), so \(A (X^o \bar{x}) = b \), so \(X^o \bar{x} \) is feasible in \(\left(P \right) \); also, \(\bar{c}^T e = c^T (X^o \bar{x}) \).

Thus, \(\left(P \right) \) is equivalent to \(\left(P \right) \), and \(\bar{x} \) is optimal for \(\left(P \right) \) with optimal value \(\bar{c} \) \(\Rightarrow \) \(X^o \bar{x} \) is optimal for \(\left(P \right) \) with optimal value \(\bar{c} \).

When we take a step in \(\left(\Pi \right) \), we need to worry about violating nonnegativity. So we'll correspond to nonnegativity. Since current point is \(\left(\Pi \right) \), \(\bar{e} \), maximum possible step length can always take a step of length at least 1.
Choosing a direction in (P):

Ideally, move in direction e.

But this may move us off the affine span $Ax = b$.

So pick a direction in the null space of A; choose \bar{d} with $\bar{A}d = 0$.

![Diagram showing null space and $\bar{A}d = 0$]

Project e onto nullspace of \bar{A}:

Call this direction $\bar{d} = \frac{1}{\alpha} \bar{e}$.

New point: $x' = e\bar{e} - \alpha \bar{d}$ for some step length $\alpha > 0$.

Now $\bar{e}^T x' = \bar{e}^T x - \alpha \bar{e}^T \bar{d} = \bar{e}^T x - \alpha \bar{e}^T p = 0$.

Projection matrix is idempotent, i.e., $p = p^T = p^2$.

So $\bar{e}^T p\bar{e} = \bar{e}^T p^{2} \bar{e} = \bar{e}^T p\bar{e}^{2} \bar{e} = \|p_{\bar{A}}\bar{e}\|^2$.

So, projected $p_{\bar{A}}\bar{e} \neq 0$, $\bar{e}^T x' < \bar{e}^T x$.
The new point in the problem \((p)\) is \(x' = x^o + \bar{x}'\)

Newton's algorithm

1. Initial \(x^o > 0\) for \(x' > 0\)

Trust region algorithm

1. Given \(c^T x = 0, \ A x^o = b, \ k = 0\)
2. Compute direction \(\bar{x} = \mathbf{A} x^o, \ c = x^o c\)
3. Calculate direction \(\bar{x} = \mathbf{A} x^o, \ c = x^o c\)
4. Scale back \(x^k+1 = \frac{x^k}{x' x'}^T x^k\)
5. Terminate loop: If termination criterion satisfied, STOP.

Step length:

1. Take \(\alpha = \frac{1}{||d||} \) more to edge of acceptability ellipsoid.
2. Take a fraction of \(\alpha \) to boundary:
 \[
 \alpha = 0.95 \min \left\{ \frac{1}{d_i} : \bar{d}_i > 0 \right\}
 \]

Termination criteria: Since algorithm is monotone, can block improve
\[c^T x < c^T x^o\] if this becomes small, STOP.
Dual variables:

\[w = (\tilde{A} \tilde{A}^T)^{-1} \tilde{A} \tilde{z} \] is a possible dual vector.

Convergence proof:

Dikin's. Assume primal and dual degeneracy.

The Step is boundary of inscribed ellipsoid.

The \((\tilde{A} \tilde{A}^T)^{-1} \tilde{A} \tilde{z} \) is a feasible solution to (P).

If \(w = (\tilde{A} \tilde{A}^T)^{-1} \tilde{A} \tilde{z} \) tends to an optimal dual solution.

Notice:

Dual to (P) is \(\max \{ b^T y \mid A y \leq c \} \) (D)

This is exactly the same as \(\max \{ b^T y \mid A y \leq c \} \) exceptslackare rescaled.

The slack, in (D) are \(2 - A^T \tilde{w} = \tilde{d} \), and slack in (D) are \((x^k)^{-1} \tilde{d} \)

So complementary slackness tends to \((x^k)^{-1} [(x^k)^{-1} \tilde{d}] = \tilde{d} \).

Since \(w \) is becoming dual feasible, it follows that \(\tilde{d} \) tends to something nonnegative. Thus, since complementary slackness, must have \(\tilde{d} \to 0 \).

So, \[\exists (x^k) \to 0 \text{ if } x \text{ is optimal point.} \]
Phase I: Need initial feasible point $b = a^T x$

So set up problem: $\max x_0$

s.t. $(b-Ax)x_0 + Ax = b$

$x_0, x \geq 0.$

Notice that $x_0 = 1, x = e$ is feasible in this problem.

Optimal solution gives feasible solution to (P) if (P) is feasible.
Dual Affine Method. (Adler, Karahan, Rescic, Vega.)

Instead of rescaling primal variables, we rescale the dual slacks.

\[\begin{align*}
\text{min} & \quad c^T y \\
A x &= b \quad (P) \\
A y + z &= c \quad (D). \\
y & \geq 0, \\
z & \geq 0.
\end{align*} \]

Have dual feasible point \((y^*, z^*)\) with \(z^* > 0\).
Rescale \((D)\) so all slacks \(z_i = z^*_i = 1\):

Multiply by \((2^*)^{-1}\):

\[\begin{align*}
\text{max} & \quad b^T \tilde{y} \\
\text{st.} & \quad A^T \tilde{y} + (2) = c. \\
\text{Equivalently:} & \quad \text{max} \quad b^T \tilde{y} \\
\text{st.} & \quad (2)^{-1} A^T \tilde{y} + z = (2)^{-1} c. \quad (D).
\end{align*} \]

\[\begin{align*}
\text{Let rows of } H \quad (H \text{ is } (m \times n) \text{ full rank}) \text{ be basis of span.} \\
\text{Then } \begin{pmatrix} A(2)^{-1} \\ H \end{pmatrix} \text{ is non-invertible matrix.}
\end{align*} \]

So \((D)\) is equivalent to

\[\begin{align*}
\text{max} & \quad b^T \tilde{y} \\
\text{st.} & \quad A(2)^{-1} A^T \tilde{y} + (2)^{-1} z = A(2)^{-1} c \\
& \quad H z = H c. \\
z & \geq 0.
\end{align*} \]

So \(\tilde{y} = (A(2)^{-1} A^T)^{-1} (A(2)^{-1} c - A(2)^{-1} z). \)
So (D) is equivalent to

\[\min b^T (A(2)^{-1} A^T)^{-1} H (2)^{-1} c - b^T (A(2)^{-1} A^T)^{-1} A(2)^{-1} z \]

s.t. \[H z = H c \]
\[z \geq 0. \]

Steep descent direction:

\[\Delta z = -P_H \left((2)^{-1} A^T (A(2)^{-1} A^T)^{-1} b \right) \]

Now, \[-P_H \left((2)^{-1} A^T (A(2)^{-1} A^T)^{-1} b \right) \]

\[= \left(I - H (H^T H)^{-1} H \right) (2)^{-1} A^T (A(2)^{-1} A^T)^{-1} b \]

\[= (2)^{-1} A^T (A(2)^{-1} A^T)^{-1} b, \text{ since } H (2)^{-1} A^T = 0, \]

by choice of \(H \).

Thus, \[\Delta y = -\left(A(2)^{-1} A^T \right)^{-1} A(2)^{-1} \Delta z \]

\[= + \left(A(2)^{-1} A^T \right)^{-1} A(2)^{-1} A^T (A(2)^{-1} A^T)^{-1} b \]

\[= + \left(A(2)^{-1} A^T \right)^{-1} b. \]

and \[\Delta z = -(2)^{-1} A^T (A(2)^{-1} A^T)^{-1} b. \]

Thus, \[\Delta z = -(2)^{-1} A^T (A(2)^{-1} A^T)^{-1} b. \]

Final estimate: \[-\Delta z, \text{ since } A\Delta z = -b. \]
Projective Methods

The Centering Direction

\[
\begin{align*}
\text{E.g.} \quad & \min \quad -x_1 - 7x_2 \\
\text{s.t.} \quad & x_1 + 10x_2 + 100x_3 = 111 \\
& x_i \geq 0,
\end{align*}
\]

Optimal point: \(x = [111 \ 0 \ 0]^T\).

Current feasible point: \(x = [1 \ 0 \ 0]^T\), so don't need to rescale.

Alone direction:

\[
A = \begin{bmatrix} 1 & 10 & 100 \end{bmatrix} \quad AA^T = 10101, \quad (AA^T)^{-1} = \frac{1}{10101} A_c = 91
\]

\[
P_{A} c = -c + A^T(1) = \begin{bmatrix} 1 \ 0 \ 0 \end{bmatrix} c - \begin{bmatrix} 91 \ 0 \ 0 \end{bmatrix} c \begin{bmatrix} 0.99 \ 0.99 \ 0.99 \end{bmatrix}^T
\]

\[
\approx 0.9 \begin{bmatrix} 1 \ 0 \ 0 \end{bmatrix}
\]

\[
x \approx \begin{bmatrix} 1 \ 0 \ 0 \end{bmatrix} + \alpha \begin{bmatrix} 0.99 \ -1 \ -1 \end{bmatrix}^T
\]

Taking \(\alpha = 1\) gives the point \(x \approx [2.1 \ 10.89 \ 0]^T\) on the boundary.

So the direction does not move us appreciably close to the optimal point.

Direction: Draw a sphere around current point, find best point in sphere in future.
In general:

Draw an ellipsoid around the current point, and find the best point on that ellipsoid. That gives the direction.

Can define an uninterpreted version of the algorithm:
Calculate direction, move to $x + \varepsilon d$, find new direction.

Step 1: Find the vertices
In the limit as $\varepsilon \to 0$, the path of iteration can appear every vertex of the polyhedron on the way to the optimal value (Megiddo & Schu, 1989, 1989)

Polyhedral is optimal solution.
Problems arise when the algorithm starts from near a vertex. So it is useful to try to "centralize the iterate.

Return to example: To try to move toward the "far-away" boundaries:

\[x_2 \quad \text{look at } P_{Ae}. \]

We know movement in this direction.

\[
P_A e = e - A^T(AA^T)^{-1}Ae = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} - \begin{bmatrix} 0.111 \\ 1001 \\ 100 \end{bmatrix}
\]

\[\approx \begin{bmatrix} 0.99 \\ 0.9 \\ -0.1 \end{bmatrix}. \]

This is better job of increasing \(x_1 \),\(\text{ let } -P_Ae \approx \begin{bmatrix} 11 \\ 10 \\ -1 \end{bmatrix}. \)

In general:

Define lower L.P. \(\min c^T x \) and the feasible point \(\bar{x}, \bar{x} > 0 \).

The affine scaling direction is \(-X_P A^{-1} c \), and

the centering direction is \(\bar{x} P_A e \).\]

Centropic direction is useful when close to a bad vertex, not so useful when close to a good vertex. So the combination of the directions
\[d = -\bar{X}x - e + \bar{X}x e \]

should reflect this: \(b \) should get smaller as we approach the optimal vertex.

E.g. could have \(b = \) current duality gap.

One way to get a balance between these directions is to use a potential function (assum optimal value = 0 for now).
\[f(x) = \frac{1}{2} \ln c^Tx - 2 \ln x^c \]

\[\frac{df}{dx_i} = \frac{1}{c^Tx} - \frac{1}{x_i} \]

So at \(x = e \):
\[Df = \frac{1}{c^Tx} (c - e) \]

So going in steepest descent direction for \(Df \) is going in the direction \[-\frac{1}{c^Tx} P e + P e . \]
A Primal-Dual Potential Reduction Algorithm.

Un potential function \(\Phi(x,s) = \rho \log x^S - \sum \log x_i s_i \) for \(s_i > 0 \). Typical choice: \(\rho = n + \sqrt{n} \).

We have \(\Phi(x,s) = (\rho - n) \log x^S + n \log x^S - \sum \log x_i s_i \)

\[= (\rho - n) \log x^S - \sum \log \left(\frac{x^S_i}{n} \right) + n \log n \]

\[= \left(n - \frac{\rho - n}{n} \right) \log x^S - \sum \log x_i s_i + n \log n \]

Thus, if \(\Phi(x,s) \to -\infty \) then we must have \(x^S \to 0 \).

So try to decrease the potential function.

Define diagonal matrices \(X, S \) and then \(D = X^S S^{-1} \).

Take direction \(\Delta x = -\nabla D x \Phi(x,s) \) \hspace{1cm} (1)

Now, \(D x \Phi(x,s) = \frac{\rho}{x^S} S - S^{-1} e \)

Hence, 6.26, show that this can be found by solving

\[
\begin{bmatrix}
0 & A^T & I \\
A & 0 & 0 \\
S & 0 & X
\end{bmatrix}
\begin{bmatrix}
\Delta x \\
\Delta y \\
\Delta g
\end{bmatrix}
= \begin{bmatrix}
0 \\
0 \\
-XS e + \frac{x^S}{\rho} e
\end{bmatrix}
\]
It can also be shown that

\[\Delta s = -DA \tilde{\mathbf{T}}(DA^2 \tilde{\mathbf{T}}^{-1} \mathbf{A}) \tilde{\mathbf{T}}_s \tilde{\mathbf{I}}, \quad (x,s) \]

with \(\tilde{\mathbf{D}}_s \tilde{\mathbf{I}}_s(x,s) = \frac{x^T}{\pi^s} x + S^{-1} e \)

\[\Delta y = (DA^2 \tilde{\mathbf{T}}^{-1} \mathbf{A}) \tilde{\mathbf{D}}_s \tilde{\mathbf{I}}, \quad (x,s) \]

Note: expressions given by (\(x\)) are scaled those given in (1), (2), (3), multiplied by \(\frac{x^T}{\pi^s} \). In what follows we use the directions given by (\(x\))

Theorem: Given a strictly feasible starting point \((x^0, y^0, s^0)\), suppose that an algorithm generates a sequence \((x^k, y^k, s^k)\) of strictly feasible iterates satisfying

\[\forall (x^{k+1}, y^{k+1}) \leq (x^k, s^k) - \delta \quad \text{for all } k = 0, 1, 2, \ldots \]

for some fixed \(\delta > 0 \). Then for any \(\epsilon > 0 \) we have an index \(k_0 \),

\[k_0 = \left[\frac{\overline{\pi}(x^0, s^0) + C^{-n} \log \epsilon}{\delta} \right] \]

such that \(\mu_k \leq \epsilon \) for all \(k \geq k_0 \). \(\text{Proof} \) See text.
Now do we reason \((\tau), \text{ it,}\)

$$\bar{\mu} \left(x^{4t+1}, \sum s_{i} \right) \leq \bar{\mu} \left(x, s_{i} \right) - \tau.$$

Let $$\alpha_{\text{var}} = \min \left\{ \alpha : x_{t} + \alpha x_{t} \geq 0, \sum s_{i} \alpha s_{i} \geq 0 \right\}.$$

Now, $$\bar{\mu} \left(x + \alpha x, \sum s_{i} \right) - \bar{\mu} \left(x, s_{i} \right)$$

$$= \mu \log \left(\frac{(x + \alpha x)^{T} (\sum s_{i})}{x^{T} x} \right) - \sum \log \frac{x_{t} + \alpha x_{t}}{x_{t}} - \sum \log \frac{s_{i} \alpha s_{i}}{s_{i}^{T} s_{i}}$$

$$= \mu \log \left(1 + \alpha s_{T} (x + x_{T}) \frac{x_{T}}{x_{T}} \right) - \sum \log \left(1 + \frac{\alpha x_{T}}{x_{T}} \right) - \sum \log \left(1 + \frac{\alpha s_{i}}{s_{i}} \right),$$

since $$\alpha x_{T} \sum s_{i} = 0,$$ because $$\alpha x$$ a nullspace of $$A$$

$$= 0$$ is a nullspace of $$A.$$

Choose a constant $$\tau \in (0, 1).$$ Let $$\tau = 0.5.$$

Define $$\alpha_{T}$$ so that

$$\alpha_{T} = \max \left\{ \frac{\alpha x}{x_{T}}, \frac{s_{T}}{s_{T}} \right\} = \tau.$$

This lets us bound the \(\sum\) term above, i.e., take $$\alpha \in (0, \tau]$$

Note: $$\alpha_{T} < \alpha_{\text{max}}.$$
We can then set up a quadratic approximation to $\phi(x + \alpha x, s + \alpha s)$.

$q(\alpha)$ is bigger than $\phi(x + \alpha x, s + \alpha s)$ for $\alpha \in (0, \infty)$.

Also, minimum value of $q(\alpha)$ is smaller than $\phi(x, s) - \delta$,

$p(\alpha \in (0, \infty))$.

So: Find minimum of $q(\alpha)$ in $(0, \infty)$ analytically.

This step will guarantee sufficient decrease in $\phi(x, s)$.

(For details, see text.)

Let $v_c = \sqrt{x_c s_c}$, let $r_c = -v_c + \frac{x_c}{s_c} \cdot \frac{1}{v_c x_c}$.

We can choose $\alpha = \frac{\text{V_dist}}{211.11}$ to guarantee a decrease of at least 0.15.
Relationship to centrality:

If iterate is centered then \(x_i S_i = \frac{x^T s}{n} = \mu \) (defined earlier).

Then, \(V_{\text{min}} = \sqrt{\nu} \) and \(c = -\sqrt{\nu} c + \frac{x^T s}{\sqrt{\nu}} \Rightarrow x = \left(\frac{x^T s}{\sqrt{\nu}} - \mu \right) c \)

so \(\|r\|^2 = n \left(\frac{x^T s}{\sqrt{\nu}} - \mu \right)^2 = n \left(\frac{(x^T s)^2}{\nu} + \mu - 2 \frac{x^T s}{\sqrt{\nu}} \right) \)

\[= n \left(\frac{n x^T s}{\nu} + \frac{x^T s}{\sqrt{\nu}} - 2 \frac{x^T s}{\sqrt{\nu}} \right) \]

\[= x^T s \left(\frac{n}{\sqrt{\nu}} - 1 \right)^2 \]

\[= x^T s \left(\frac{\rho - n}{\rho} \right)^2 = \lambda \mu \left(\frac{\rho - n}{\rho} \right)^2 \].

Thus, \(\frac{V_{\text{min}}}{\|r\|^2} = \frac{1}{n} \frac{\rho}{\sqrt{\nu}} \sim 1 \) with \(\rho = n + \delta n \).

If poorly centered, so \(\frac{V_{\text{min}}}{\|r\|^2} \ll \mu \), get \(\alpha \ll 1 \).

So can take larger steps if iterate is better centered.

Note that we can’t get too poorly centered, at least Cond. \(x_i S_i \geq \varepsilon \).

In practice:

Try long steps, e.g. \(0.95 \alpha \). If get sufficient decrease in potential function, accept the step. Else, reduce the step and try again.