Find a feasible point for \(Ax \leq b \). \(A \) is \(mn \).

Have an ellipsoid \(E_k \) that contains \(\text{Ex: } Ax \leq b \).

Know center \(z_k \) of \(E_k \).

If \(Ax \leq b \), done.

Else \(z_k \) violates one of the constraints, say \(a_i z_k \geq b_i \)
where \(a_i^T \) is the row of \(A \).

Then \(\text{Ex: } Ax \leq b \) \(\subseteq E_k \cap \{ x \mid a_i^T x \leq b_i \} \).

So construct a new ellipsoid \(E_{k+1} \geq E_k \cap \{ x \mid a_i^T x \leq b_i \} \),
with new center \(z_{k+1} \).
Def. A matrix \(M \) is positive definite if \(x^T M x > 0 \) whenever \(x \neq 0 \).

Def. \(M \) is positive definite if all the eigenvalues of \(M \) are positive.

Def. An elliptoid is a collection of points

\[\{ x \in \mathbb{R}^n : (x - \mu)^T M^{-1} (x - \mu) \leq 1 \} \]

where \(M \) is a symmetric positive definite matrix, \(\mu \) is the center of the ellipsoid.

\[\text{Eq. (1)} \quad M = \begin{bmatrix} 4 & 0 \\ 0 & 9 \end{bmatrix}, \quad \mu = \begin{bmatrix} 3 \\ -2 \end{bmatrix}. \]

Then

\[(x - \mu)^T M^{-1} (x - \mu) \leq 1 \iff \frac{1}{4} (x_1 - 3)^2 + \frac{1}{9} (x_2 + 2)^2 \leq 1 \]
(2) \[M = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} \]
\[\text{null}(M) = \text{span}(\begin{bmatrix} 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix}). \]

\[z = \begin{bmatrix} 3 \\ 5 \end{bmatrix} \]

\[S_0, \text{ an ellipse of } B \]

\[x \mapsto \|x-z\|, M = B^T B^{-1} \]

\[S_0, \text{ in order to describe a ellipsoid, we need to give the center } z \]

and the matrix \(M \).

Initially, we take \(E_0 = \{ x : x^T x \leq 1 \} \),

\[z_0 = 0, M_0 = \frac{1}{4} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \]

so \(E_0 \) is a bound on version of the unit ball. It suffices to take \(L = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \).

\[L = 2^{-\frac{1}{2}}, \text{ when } v = \sin \phi \in [0, \pi] \text{ for } \phi \in \mathbb{R}. \]

Given \(z_k, a_k \), get \(z_{k+1}, a_{k+1} \) as follows:

\[z_{k+1} = z_k - \frac{1}{n+1} \frac{a_k}{\sqrt{a_k^T M_k a_k}} \]

\[M_{k+1} = \frac{n}{n+1} \left(M_k - \frac{z_k}{n+1} \frac{a_k a_k^T M_k}{a_k^T M_k a_k} \right) \]
We have the following result:

\[
\frac{\text{Vol} \left(\mathbb{E}^{k+1} \right)}{\text{Vol} \left(\mathbb{E}^k \right)} < e^{-\frac{1}{16n^2}}.
\]

Let \(\mathcal{P} = \{ x : \|Ax\| \leq \delta \} \) be bounded and full-dimensional.

Then \(\text{Vol}(\mathcal{P}) \geq 2^{-2n\delta^2} \), \(\delta \) as before.

So, now assume either \(\mathcal{P} = \emptyset \) or \(\mathcal{P} \) is full-dimensional.

We have \(\mathbb{E}^k \supseteq \mathcal{P} \) for all \(k \).

Also, \(\text{Vol} \left(\mathbb{E}^{k+1} \right) < e^{-\frac{1}{16n^2}} \text{Vol} \left(\mathbb{E}^k \right) \)

\[
< \cdots < e^{-\frac{(k+1)}{16n^2}} \text{Vol} \left(\mathbb{E}^0 \right)
\]

\[
\leq e^{-\frac{(k+1)}{16n^2}} (2\delta)^n.
\]

So, eventually we'll either have \(x^{(k)} \notin \mathcal{P} \) or we'll get \(\text{Vol}(\mathbb{E}^{k+1}) \leq 2^{-2n\delta} \), showing that \(\mathcal{P} \) is empty.

Let \(k = 16n^2 \nu \)

Then \(\text{Vol}(\mathbb{E}^k) \leq 2^{-2n\delta} \).

If \(\mathbb{E} = \{ x : (x-\mu)^T \Sigma^{-1} (x-\mu) \leq \beta \} \) then \(\text{Vol}(\mathbb{E}) \propto \sqrt{\det(\Sigma)} \).
Complete Alg:

0. Initialize: \(M_0 = \Delta I, \quad z_{\infty} = 0, \quad k = 0. \)

1. Check feasibility: Is \(z_{k+1} \in R \)? If yes, stop, successful termination.
 If no, find i with \(a_i^T z_k > b_i \).

2. Shrink ellipsoid: \(z_{k+1} = z_k - \frac{1}{n+1} \frac{M_k a_i}{\sqrt{a_i^T M_k a_i}} \)
 \(M_{k+1} = \frac{1}{2} M_k - \frac{2}{n+1} \frac{M_k a_i (a_i^T M_k a_i)}{a_i^T M_k a_i} \)
 \(k \leftarrow k + 1 \)

3. Ellipsoid too small?
 If \(k \geq 16\varepsilon^2 \sqrt{n} \), stop: \(P \) is empty.
 Else, return to 1.

Minimizing a linear function over an ellipsoid:

Consider the problem \(\min_x \quad d^T x \) \hspace{1cm} (d \not= 0)

subject to \((x-z)^T M^{-1} (x-z) \leq 1 \)

What conditions for this problem:

\(d + 2uM^{-1}(x-z) = 0 \)

So optimal \(x \) is \(\bar{x} = z - \frac{1}{2u} M d \).

The constraint must hold at equality, so \((x-z)^T M^{-1} (x-z) = 1 \)

Thus \(\frac{1}{4u} d^T S d = 1 \), so \(u = \sqrt{\frac{d^T S d}{4}} \) and \(\bar{x} = z - \frac{Md}{\sqrt{d^T S d}} \).
Hence the update

$$Z_{k+1} = Z_k - \frac{1}{\lambda_k+1} \frac{M_k}{\sqrt{\lambda_k+1}}$$

moves in the direction of minimizing $c^T x$, but not very close in that direction.

$$c^T x = c^T Z_k$$

Since P may not be full dimensional, the $Q = \{ x : A x \leq b + \varepsilon \}$

If ε is small enough, P is empty $\iff Q$ is nonempty.

Solving $\min Q c^T x : A x \leq b$.

If z_k satisfies $A x \leq b$, update:

$$Z_{k+1} = Z_k - \frac{1}{\lambda_k+1} \frac{M_k}{\sqrt{\lambda_k+1}}$$

$$M_{k+1} = \frac{n^2}{n^2 + 1} \left(\frac{M_k - \frac{2}{n+1} \frac{M_k c c^T M_k}{c^T M_k}}{c^T M_k} \right)$$
In practice, the worst case bound is not competitive with simplex. Even references like "deep cut" don't really help.

Deep cut:

\[\frac{1}{2} a_i x = a_i \bar{z} \quad a_i x = b_i \]

Get any possible cut, so long that ellipsoid is repeatable. I think it of centroid.

Equivalence of separator & optimizer.