Exam Wed. Feb 11
Extra office hrs Tuesday Feb 10 4 - 5

Topics
First-order ODE's: general sol, solve initial value problem
 - graphical methods
 - autonomous equations
 - analytical methods
 - integrating factors
 - separation of variables
 - numerical method: Euler's method
Modeling problems
Second-order ODE's: general sol, solve initial value problems
 - constant-coeff. linear homogeneous eqs.

8.3.2 continued

Last time: linear independence of functions

\[f_1, f_2 \text{ are lin. indep. if } k_1 f(t) + k_2 g(t) = 0 \]

\[f_1' = f_2' \]

\[k_1 + k_2 = 0 \]

\[W(f_1, f_2)(t_0) \neq 0 \rightarrow f_2 \text{ lin. indep. for some } t_0 \]

Thm. 8.3.2 (Abel's Thm)

If \(y_1, y_2 \text{ solve } y'' + p(t)y' + q(t)y = 0 \)

then \(W(y_1, y_2) \) is always 0 or never zero

\[\begin{align*}
 y_1'y_2'' - y_2'y_1'' + p(y_1'y_2 - y_2'y_1) &= 0 \\
 W'(y_1, y_2) + W(y_1, y_2) &= 0
\end{align*} \]

This is a first order, linear ODE for \(W \).
Solve by method of integrating factor ... get \(W = ce^{-\int p(t) dt} \).
Note that to compute the Wronskian (up to the constant) we only need to know the ODE not its solutions.

This formula for the \(W = C e^{-\int p \, dt} \) also gives us a way to find a second solution to the ODE if we already know one solution.

\[
W \, \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} = W = C e^{-\int p \, dt}
\]

If \(y_1 \) is known then this is a linear 1st order ODE for \(y_2 \).

The book uses method of reduction of order

look for \(y_2 = v(t) y_1(t) \)

For solutions of \(y'' + p(t)y' + q(t)y = 0 \) the following is equivalent:

1. \(\{y_1, y_2\} \) form a fundamental set of solutions
2. \(y_1 \) and \(y_2 \) are linearly independent
3. \(W(y_1, y_2)(t_0) \neq 0 \) for some \(t_0 \)
4. \(W(y_1, y_2)(t) \neq 0 \) for all \(t \)

To get a general solution of \(y'' + p(t)y' + q(t)y = 0 \),

find \(y_1 \) and \(y_2 \) satisfy

calculate \(W(y_1, y_2) \) is non-zero somewhere

If this is true, then the general solution of \(y'' + p(t)y' + q(t)y = 0 \) is \(c_1 y_1(t) + c_2 y_2(t) \)

Vector Space Interpretation

Solutions to 2nd order linear ODE are vectors in \(\mathbb{R}^2 \)

Linear independence

\(k_1 y_1 + k_2 y_2 = 0 \) \(\Rightarrow \) \(k_1 = k_2 = 0 \)

Linear combination of solutions is again a solution

Linear combination of two vectors is a vector

Fundamental set of solutions is a basis (\(\{1, \sqrt{3}\} \) for example)

**
Ex \(\{ e^{at}, e^{-at} \} \)
\[
\frac{e^{at} + e^{-at}}{2} \cdot \frac{e^{at} - e^{-at}}{2}
\]
\(\{ \cosh at, \sinh at \} \)

Any solution can be written as a linear combo of basis solutions (fundamental set).

Any vector in \(\mathbb{R}^2 \) can be written as a linear combo of vectors in \(\mathbb{R}^2 \).

Dimension of space of solution is the # of elements in fundamental set \((= \text{order of ODE}) \)

Dimension of space = number of elements in basis