Differential Equation

An equation containing derivatives is called a differential equation.

Notation: D.E.

a) An equation involving only ordinary derivatives is called an ordinary differential equation. Notation: O.D.E.

b) An equation involving partial derivatives is called a partial differential equation. Notation: P.D.E.

c) We shall consider an equation having the form:

\[\frac{dX}{dt} = AX + G, \]

where \(X \) is a vector, \(A \) is a given matrix, and \(G \) is a vector valued function. This type of equation is called a system of differential equations.

Order

The highest order of derivation is called order of the D.E.

Examples:

a) \(y'' + y = 0 \) is a first order O.D.E.

b) \(x \frac{du}{dx} + \frac{du}{dy} = 0 \) is a first order P.D.E.

c) \(\frac{3u}{3t} = \frac{3u}{3t} \) is a second order P.D.E.

d) \(y''' - y = 0 \) is a third order O.D.E.
\[\begin{align*}
\frac{dx}{dt} &= y \\
\frac{dy}{dt} &= -x
\end{align*} \]

is a system of ODEs \(\text{of order one} \)

3. **Solution**

Suppose that \(f \) is continuously differentiable up to order \(n \) on an interval \(I \), and satisfies an ODE \((E) \) of order \(n \), then \(f \) is called a solution of \(E \).

Examples

a) \(y'' + y = 0 \) \(\text{(E)} \)

Clearly, for each constant \(c \),

\[f(x) = c \cos x, \quad \infty < x < \infty \]

is a solution of \((E) \)

b) \(y'' + w^2 y = 0 \)

Since \((\cos wx)' = -w \sin wx, \cos wx \) is a solution.

Similarly, \(\sin wx \) is also a solution.

General solution

A formula describing all solutions of a D.E. is called the general solution of the equation.

Particular solution

A solution of a D.E., which is free from arbitrary constants, is called a particular solution.
Example: \(y' + y = 0 \)

Clearly, the constant 1 satisfies this D.E. It is a particular solution. But all solutions have the form: \(y(x) = Ae^{-x} \), where \(a \) is an arbitrary constant. Therefore \(y_p(x) = 1 \) is a particular solution and \(Ce^{-x}+1 \) is the general solution.

4) Linearity

An \(n \)th order O.D.E. having the form:
\[
\gamma^{(n)} + a_1(x)\gamma^{(n-1)} + \ldots + a_n(x)\gamma = g(x), \quad x \in I
\]
where \(a_1, \ldots, a_n \) and \(g \) are functions of \(x \) only, is called linear. Otherwise, the equation is said to be nonlinear.

Examples:

a) \(y'' + x^{-1}y' + y = 0 \), \(x > 0 \), is linear

b) \(y'' + k\sin y = 0 \), is nonlinear

5) Initial and boundary conditions

Consider the linear D.E.
\[
y'' + a_1(x)y' + a_2(x)y = g(x), \quad x \in I
\]
and suppose that \(y(x), y'(x) \) are given at some point \(x_0 \) in I. The conditions of \(y \) and its derivative at \(x_0 \) are called initial conditions. The problem of solving the D.E. subject to the initial conditions is an initial value problem.

Notation: I.V.P.

Consider the linear D.E.
\[
y'' + a_1(x)y' + a_2(x)y = 0, \quad a \in [0, b]
\]
with the boundary conditions:
\[
\begin{align*}
\alpha_1 y(a) + \alpha_2 y'(a) &= 0 \\
\beta_1 y(b) + \beta_2 y'(b) &= 0
\end{align*}
\]
The problem of solving the D.E. subject to the boundary conditions is called a boundary value problem.

Notation: B.V.P.

Examples:

1) Consider the D.E.

\[y'' = -g \quad \text{where} \quad \frac{d}{dt} \]

and \(g \) is the constant of gravity.

By integrating twice, we get the general solution

\[y(t) = -\frac{1}{2} gt^2 + c_1 t + c_2 \]

where \(c_1 \) and \(c_2 \) are constants of integration.

Suppose we are given the initial position and the initial velocity: \(y(0) = y_0 \) and \(y'(0) = v_0 \)

which are the initial conditions, then it is possible to obtain the unique solution of this I.V.P., which is simply

\[y(t) = -\frac{1}{2} gt^2 + v_0 t + y_0 \]

2) Consider the B.V.P.

\[y'' + ky = 0 \quad , \quad 0 < x < 1 \]

with the B.C.: \(y(0) = 0 = y(1) \)

The general solution is

\[y(x) = a \cos kx + b \sin kx \]

where \(a \) and \(b \) are arbitrary constants.

 Applying the B.C., we get:

\[0 = y(0) = a \]

\[0 = y(1) \Rightarrow \sin k = 0 \Rightarrow k = n\pi \]

In order to have nontrivial solutions, we must have \(k^2 = (n\pi)^2 \), \(n = 0, 1, 2, \ldots \), and each \(y_n(x) = \sin n\pi x \) is a solution.