TRUE/FALSE QUESTIONS

SETS & FUNCTIONS
Chapters #2 and #3

(1) A proper subset of a subset of a set, \(S \), is a proper subset of \(S \).

(2) The union of two non-empty sets is non-empty.

(3) The intersection of two non-empty sets is non-empty.

(4) If the set, \(A \), is a proper subset of the set, \(B \), the complement of \(A \) in \(B \) is non-empty.

(5) The empty set is a proper subset of the empty set.

(6) Every set is a subset of itself.

(7) If two sets are disjoint their union is the empty set.

(8) Let \(A \) denote a subset of the set \(U \). Then
\[x \in U \setminus A \iff (x \in U) \land (x \notin A). \]

(9) Let \(A \) and \(B \) denote subsets of a set \(U \). Then
\[(A \cup B)^c = A^c \cap B^c. \]

(10) Let \(A \) and \(B \) denote subsets of a set \(U \). Then
\[(A \cap B)^c = A^c \cup B^c. \]

(11) Let \(S \) and \(T \) denote non-empty sets. Let \(f : S \onto T \) and \(g : T \onto S \). Then \(f \) and \(g \) are both 1-1 functions.
(12) Let S and T denote non-empty sets. Let $f : S \rightarrow T$. Then the inverse function, f^{-1}, is defined on T.

(13) Let S and T denote non-empty sets and let $f : S \rightarrow T$. Then the domain of f is S.

(14) Let S and T denote non-empty sets and let $f : S \rightarrow T$. Then the range of f is T.

(15) Let S and T denote non-empty sets and let $f : S \rightarrow T$. Then the image of S under f is T.

(16) Let S and T denote non-empty sets. Let $f : S \rightarrow T$. Then f^{-1} is an onto function.

(17) Let S and T denote non-empty sets and let $f : S \rightarrow T$. Let $B \subseteq T$. Then $f^{-1}(B) \neq \emptyset$.

(18) Let S and T denote non-empty sets and let $f : S \rightarrow T$. If A is a subset of S it follows that $A = f^{-1}(f(A))$.

(19) Let $f : \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x) = x^3$, $\forall x \in \mathbb{R}$. Then $f^{-1}(x) = x^{\frac{1}{3}}$, $\forall x \in \mathbb{R}$.

(20) An onto function is necessarily one-to-one.

(21) Let S and T denote non-empty sets. Let $f : S \rightarrow T$. Then the two functions $f^{-1} \circ f$ and $f \circ f^{-1}$ are equal.

(22) Let S and T denote non-empty sets and let $f : S \rightarrow T$. If the inverse function, f^{-1}, exists, then necessarily f is 1-1.

(23) Let S and T denote non-empty sets and let $f : S \rightarrow T$. If x and y are elements of S such that $f(x) = f(y)$, then $x = y$.

(24) Let S and T denote non-empty sets. A function from S into T is a subset of the product space $S \times T$.

(25) Let S and T denote non-empty sets. Every subset of the product
space, $S \times T$, is a function from S into T.

____(26) Let A be a subset of the set S. For each such A denote its characteristic function by f_A. Then if A and B are subsets of the set S it follows that $f_{A \cup B} = f_A f_B$.

3