1. ANS: -1
2. ANS: 6
3. ANS: \(\frac{x}{\sqrt{1+x^3}} \)
4. ANS: \(s(t) = \frac{3t^2}{2} + t - 4 \)
5. \[
\int \left(\frac{t^3}{4} + \frac{4}{\sqrt{t}} \right) \, dt = \frac{t^4}{16} + t + C \\
\int (e^x + 3) \, dx = e^x + 3x + C \\
\int 3x^{-1} \, dx = 3 \ln |x| + C
\]
6. Evaluate the following integrals:
\[
\int_0^2 (2x - 3) \, dx = -2 \\
\int_{-1}^2 \left(4x + \frac{2}{x^2} \right) \, dx = 3
\]
7. Given the curves \(y = x^2 + 1 \) and \(y = 1 - x \)
 (a)
 (b) \(x = -1 \) and \(x = 0 \)
 (c) \[
 \int_{-1}^0 \left[(1 - x) - (x^2 + 1) \right] \, dx = \frac{1}{6}
 \]
8. Rewrite the following improper integral with limits.
\[
\int_0^3 \frac{2}{x^2 - 1} \, dx = \lim_{t \to 1^-} \int_0^t \frac{2}{x^2 - 1} \, dx + \lim_{t \to 1^+} \frac{2}{x^2 - 1} \, dx
\]
9. Given the region bounded by \(y = e^x, \, x = 0, \, x = 2 \) and \(y = 0 \)
 (a)
 (b) \[\int_0^2 e^x \, dx \]
 (c) \[\int_0^2 \pi (e^x)^2 \, dx = \int_0^2 \pi e^{2x} \, dx \]
10. Given the curve \(y = 2x - x^2 \) on the interval \(0 \leq x \leq 2 \).
 (a) \[s = \int_0^2 \sqrt{1 + (2 - 2x)^2} \, dx \]
(b) \[S = \int_{0}^{2} 2\pi \left(2x - x^2\right) \sqrt{1 + (2 - 2x)^2} \, dx \]

11. Given the function \(f(x) = x^2 \)

 (a) \(f_{\text{ave}} = \frac{4}{3} \)

 (b) \(x^* = \frac{2}{\sqrt{3}} \)

12. \(x-y \) equation is \(y = 2x + 2 \) and direction of motion is up and to the right.

13. \(x = 2 - 6t \quad y = 3 - 2t \quad 0 \leq t \leq 1 \)

14. rectangular coordinates are \((3\sqrt{3}, 3) \).

15. equation in polar:

 \[9r^2 \cos (\theta) \sin (\theta) = 4 \]

16. Given the curve

 \[\begin{cases} x = t^3 - 4t \\ y = t^2 - 3 \end{cases} \]

 (a) \(\frac{dy}{dx} = \frac{2t}{3t^2-4} \)

 (b) Slope of the tangent line at \(t = -1 \) is 2.

 (c) Slope of the tangent line at \(t = 1 \) is -2.

 (d) Slope of the tangent line at \((0,1) \) is \(\frac{1}{2} \).

 (e) ANS: Vertical when \(t = \frac{2}{\sqrt{3}} \) and \(t = -\frac{2}{\sqrt{3}} \); Horizontal when \(t = 0 \).

17. The conic section is a parabola and standard form is: \((y - 2)^2 = x + 2 \) or \((y - 2)^2 = 4\left(\frac{1}{4}\right)(x + 2) \)