DEFINITIONS

• function
• group
• field
• ordered field
• real numbers
• domain of a function
• codomain of a function
• onto function
• 1-1 function
• inverse function
• range of a function
• image of a pt. (set)
• preimage of a set
• composition of functions
• equal functions
• set union
• set intersection
• set complement
• countable set
• finite set
• uncountable set
• rational number
• irrational number
• integers
• upper bound of a set in \mathbb{R} (and lower bound)
• least upper bound of a set in \mathbb{R} (and glb)
• Archimedean property of \mathbb{R}
• subset
• proper subset
• graph of a function
• sequence
• finite sequence
• infinite sequence
• convergent sequence
• sequence converges to a real number
• sequence converges to infinity
• Cauchy sequence
• geometric series
• real-valued function continuous at a point
• absolute value function
• an infinite set
• the cardinality of a finite set
• two sets have the same cardinality
• the power set of a set
• the continuum hypothesis
• the Cantor set
• the ternary representation and decimal representation of an element in $[0,1]$.
THEOREMS, WORKSHEETS and HOMEWORKS

- Two deMorgan’s Laws (proof, see Course Notes)
- Induction Theorem (statement and proof, see Course Notes)
- A non-empty set of integers, that is bounded below, contains a least element. (proof, see Course Notes)
- $|2^S| > |S|$ (cocktail party proof, see Course Notes)
- Decimal Representation Theorem (statement, see Course Notes)
- \[f(A \cup B) = f(A) \cup f(B) \text{ and like statements} \] (proof, WS 3.1.2 & WS 3.3.1)
- In a group the zero element is unique and the inverse of an element is unique. (proof, WS 4.2.1)
- If \(x \in \mathbb{R} \) there exists \(n \in \mathbb{Z} \) such that \(n \leq x < n+1 \). (proof, WS 4.4.5)
- If \(f \) and \(g \) are real-valued continuous functions defined on some real domain, then so too is \(f + g \). (proof, WS 4.8.2)
- If \(f \) and \(g \) are real-valued continuous functions defined on some real domain, then so too is \(\lambda f, \forall \lambda \in \mathbb{R} \). (proof, WS 4.8.4)
- A finite set can have at most one cardinality. (proof, WS 5.1.1)
- Let \(\{a_k\}_{k=0}^{\infty} \) be a sequence in a field \(\mathcal{F} \). Prove that
 \[\sum_{k=1}^{n} (a_k - a_{k-1}) = a_n - a_0, \forall n \in \mathbb{Z}^+. \]
 Such a sum is called a **telescoping sum**. (proof, WS 6.2.4)
- \(\mathbb{Z} \) is unbounded. (proof, HW 8)
- An infinite sequence in \(\mathbb{R} \) can have at most one limit in \(\mathbb{R} \). (proof, HW 10)
- Let \(\{a_k\}_{k=0}^{\infty} \) be a sequence in a field \(\mathcal{F} \) and let \(\lambda \in \mathcal{F} \). Prove that
 \[\lambda (\sum_{k=0}^{n} a_k) = \sum_{k=0}^{n} \lambda a_k. \] (proof, HW 15)

TRUE/FALSE QUESTIONS

- all True/False questions from Chapters #2-7