1. Fill in the values of the trigonometric functions in the chart below.

<table>
<thead>
<tr>
<th>θ</th>
<th>0</th>
<th>$\frac{\pi}{6}$</th>
<th>$\frac{\pi}{4}$</th>
<th>$\frac{\pi}{3}$</th>
<th>$\frac{\pi}{2}$</th>
<th>θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>sin θ</td>
<td>0</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{\sqrt{2}}$</td>
<td>$\frac{\sqrt{3}}{2}$</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>cos θ</td>
<td>1</td>
<td>$\frac{\sqrt{3}}{2}$</td>
<td>$\frac{1}{\sqrt{2}}$</td>
<td>$\frac{1}{2}$</td>
<td>0</td>
<td>$\frac{3\pi}{2}$</td>
</tr>
<tr>
<td>tan θ</td>
<td>0</td>
<td>$\frac{1}{\sqrt{3}}$</td>
<td>1</td>
<td>$\sqrt{3}$</td>
<td>undefined</td>
<td>0</td>
</tr>
</tbody>
</table>

2. Given that $\sin \theta = \frac{3}{5}$ and $\pi/2 < \theta < \pi$, find the exact values of the remaining five trigonometric ratios.

$$\cos \theta = -\frac{4}{5}, \quad \tan \theta = -\frac{3}{4}, \quad \csc \theta = \frac{5}{3}$$

$$\sec \theta = -\frac{5}{4}, \quad \cot \theta = -\frac{4}{3}$$

3. ans: $x = \frac{\pi}{2} \pm n\pi$ and $x = \pi \pm 2n\pi$

4. $\cos (\tan^{-1}(x)) = \frac{1}{\sqrt{1 + x^2}}$

5. $\sin^{-1}\left(\frac{\sqrt{3}}{2}\right) = \frac{\pi}{3}$

6. $\lim_{x \to -3} \frac{x^2 - 2x}{x + 1} = \frac{3}{4}$

$$\lim_{x \to -2} \frac{x^2 - 4x + 4}{x^2 + x - 6} = 0$$

$$\lim_{\theta \to 0} \frac{\sin (3\theta)}{\theta} = 3$$

$$\lim_{x \to -1^-} f(x) \text{ where } f(x) = \begin{cases} 2x + 1 & \text{if } x < -1 \\ 3 & \text{if } -1 < x < 1 \end{cases} \quad \text{ANS: } \lim_{x \to -1^-} f(x) = -1$$

$$\lim_{x \to 2} \frac{x^2 - x - 2}{x^2 - 4} = \frac{3}{4}$$

$$\lim_{x \to \pi} \sin \left(\frac{x}{3}\right) + x^2 = \frac{\sqrt{3}}{2} + \pi^2$$
7. (a) \(f(x): D=\text{all reals}, R=\text{all reals} \), \(g(x): D=\text{all reals}, R=[-1,1] \)

(b) \(h(x) = \frac{\cos(x)}{-2x^3 + 16} : D=x \neq 2 \)

(c) \(f^{-1}(x) = \sqrt[3]{\frac{16 - x}{2}} : D=\text{all reals} \).

(d) \(f(g(x)) = -2 \cos^3 \theta + 16 \)

(e) \(k(x) = 2g(x) - 2 \)

8. Given \(f(x) = \sqrt{x + 1} \) and \(g(x) = x^2 - 4 \),

(a) \(f \circ g = \sqrt{x^2 - 3}, D=x < -\sqrt{3} \) or \(x > \sqrt{3} \)

(b) \(g \circ f = x - 3, D=x \geq -1 \) (from domain of \(f \))

(c) \(\frac{f(x)}{g(x)} = \frac{\sqrt{x+1}}{x^2 - 4}, D=x \geq -1, x \neq 2 \)

9. Solve each of the following equations for \(x \):

\[
\ln \left(\frac{1}{x} \right) + \ln \left(2x^3 \right) = \ln 3 \quad \text{ANS: } x = \sqrt[3]{\frac{3}{2}}
\]

\[
3e^{-2x} = 5 \quad \text{ANS: } x = -\frac{1}{2} \ln \left(\frac{5}{3} \right)
\]

\[
2 \ln (4x) - 1 = 6 \quad \text{ANS: } x = \frac{e^{\frac{7}{4}}}{4}
\]

10. Must write out limit definition of derivative, show work to simplify numerator and eliminate \(h \) in denominator to receive full credit!

11. (a) \(v_{avg} = 10 \frac{ft}{s} \)

(b) \(v_{inst}(2) = 13 \frac{ft}{s} \)

12. \(y = 9x - 5 \).

13. Find the indicated derivatives. You may need to rewrite the function before taking the derivative.

\[f(x) = x(3x^2 - \sqrt{x}), \text{ find } f'(x) = 9x^2 - \frac{3}{2}\sqrt{x} \]

\[g(x) = x^3 + \frac{4}{x^2}, \text{ find } \frac{d^2g}{dx^2} = 6x + \frac{24}{x^4} \]

\[h(t) = (2t + 3)^\frac{2}{3}, \text{ find } h'(t) = \frac{4}{3}(2t + 3)^{-\frac{1}{3}} \]

14. Given \(f(2) = -3, f(4) = 2, g(0) = 1, g(2) = 5, f'(0) = 0, f'(1) = -1, f'(2) = 3, g'(0) = 2, g'(1) = -6, g'(2) = 7, \)
(a) \(H'(2) = 5(3) - 2(7) = 1 \)
(b) \(F'(0) = -2 \)

15. Sketch a graph of a function with the properties \(f(-1) = 2 \), \(\lim_{x \to -1^-} f(x) = -3 \) and \(\lim_{x \to -1^+} f(x) = \infty \).

16. Sketch the graph of a function \(f \) that satisfies the conditions that \(f \) is continuous everywhere except at \(x=1 \) and at \(x=3 \). Sketch your graph in such a way that the two-sided limit at \(x=1 \) DOES NOT exist while the two-sided limit at \(x=3 \) DOES exist. Label a few tickmarks to show the scale you are using on your graph.

17. GIVEN A GRAPH OF \(F \): be able to determine:
 (a) all \(x \) values where the \(f(x) \) is discontinuous.
 (b) the limit of \(f(x) \) at a specified \(x \) value.
 (c) all \(x \) values where the limit of \(f(x) \) does not exist.
 (d) all horizontal and vertical asymptotes of \(f(x) \).
 (e) all \(x \) values where the derivative of \(f(x) \) is undefined.
 (f) roughly sketch \(f'(x) \) given the graph of \(f(x) \).