1 Evaluate \(\lim_{{x \to -2}} \frac{x^2 + 6x + 3}{x^2 - 3x + 9} \). Express your answer in simplified form.

2 Evaluate the possibly infinite limit

\[
\lim_{{x \to -\infty}} \frac{1 - x - x^2}{8x^2 - 8x}
\]

Express your answer in simplified form.

3 Let \(f(t) = 2t^{1/2} + t^{-1/2} \). Find \(\frac{df(t)}{dt} \) at \(t = 4 \). Express your answer in simplified form.

4 Differentiate the function \(y(x) = \frac{\theta^x}{5 + 9x} \) and express your answer explicitly in terms of elementary functions.
5 Differentiate the function \(f(x) = 2x \cos(x) \).

Express your answer in terms of elementary functions.

6 Find an equation of the tangent line to the curve \(y = -2 \sin(x) - \sin^2(x) \) at the point \((0, 0) \).

Express your answer in the form \(y = ax + \beta \) where \(a \) and \(\beta \) are in simplified form.

7 Suppose that \(y \) is a differentiable function of \(x \) defined in a neighborhood of \(x = 2 \) and that \(y \) is given implicitly by \(x^2 y + 5y + x \cos(y) = 3x - 4 \).

Evaluate \(\frac{dy}{dx} \) when \(x = 2 \) and \(y = 0 \). Express your answer in simplified form.

8 Let \(f(t) = (5 + 2t)^5 \). Express \(\frac{d^2}{dt^2} f(t) \) in the form \(a(5 + 2t)^\beta \) where \(a \) and \(\beta \) are rational numbers in simplified form.
9 Let \(f(x) = \ln\left(7e^{-2x} + 5xe^{3x}\right) \). Express \(\frac{df(x)}{dx} \) in terms of elementary functions.

10 A particle moves along the curve \(y = \sqrt[3]{9 + x^2} \). As it reaches the point \((3, 6)\), the \(y \) coordinate is increasing at a rate of 4. How fast is the \(x \) coordinate of the particle changing at that instant?

11 Find the absolute maximum value of \(f(x) \) on the given closed interval.

\[f(x) = -5x^2 + 20x + 3, \ [1, 4] \]

12 Evaluate the possibly infinite limit \(\lim_{t \to 0^+} \frac{e^t - 1}{t^6} \).

Express your answer in simplified form.
13 Express in simplified form the value of \[\int_{1}^{15} \frac{30 + u^2}{u^3} \, du \, . \]

14 Express the indefinite integral in terms of elementary functions. Use the symbol \(C \) to denote an arbitrary constant.

\[\int x \left(1 + 4x^4 \right) \, dx \]

15 Express in simplified form the value of

\[\int_{0}^{1} x^2 \left(1 - 2x^3 \right)^2 \, dx \, . \]

16 Find the area of the bounded region enclosed by the graphs of \(y = x^2 - 5x - 1 \), \(y = -5x + 3 \), \(x = 0 \) and \(x = 1 \) given that the first two graphs intersect at the points \(\{-3, 13\} \) and \(\{2, -7\} \).
1. $\frac{-5}{19}$
2. $\frac{-1}{8}$
3. $\frac{7}{16}$
4. $\frac{9x^8 - 4e^x}{(5+9x)^2}$
 $y'(x) = \frac{9x^8 - 4e^x}{(5+9x)^2}$
 $\frac{dy}{dx} = \frac{9x^8 - 4e^x}{(5+9x)^2}$
5. $f(x) = 2\cos(x) - 2x\sin(x)$
 $f'(x) = 2\cos(x) - 2x\sin(x)$
6. $y = -2x$
 $y(x) = -2x$
7. $\frac{2}{9}$
8. $80(5+2)^3$
9. $\frac{(-14e^{2x} + 5e^{3x} + 15e^{3x})}{(7e^{2x} + 5e^{3x})}$
10. $\frac{16}{9}$
11. -3
12. ∞
13. $\frac{224 + \ln(15)}{15}$
14. $\frac{1}{2}x^2 + \frac{2}{3}x + C$
15. $\frac{1}{9}$
16. $\frac{11}{3}$